

EnSol, Inc. 661 Main St. Niagara Falls, NY 14301 716.285.3920

ensolinc.com

Transmitted Via Electronic Mail

June 29, 2021

Daniel Maseo, PG Division of Materials Management **New York State Department of Environmental Conservation-Region 8** 6274 East Avon-Lima Road Avon, New York 14414-9519 daniel.maseo@dec.ny.gov

Re: Lockwood Hills LLC, Lockwood Ash Disposal Site 2021 First Quarter Environmental Monitoring Report

Dear Mr. Maseo:

On behalf of Lockwood Hills LLC, please find attached the 2021 First Quarter Environmental Monitoring Report for the Lockwood Ash Disposal Site in the Town of Torrey, Yates County, New York. The first quarter 2021 sampling event of routine water quality parameters in groundwater, surface water, and leachate was completed between March 1st and 2nd, 2021.

We trust this report satisfies your requirements for quarterly reporting for the Lockwood Ash Disposal Site. Should you have any questions or comments, please do not hesitate to contact us.

Sincerely,

EnSol, Inc. Ryan Ellioto

Ryan Elliott, MS relliott@ensolinc.com

ec: Dale Irwin, Lockwood Hills LLC Chris Gill, Lockwood Hills LLC Tim Panaski, Lockwood Hills LLC Greg MacLean, NYSDEC Tara Blum, NYSDEC Daniel Maeso, NYSDEC Jonathan Tamargo, NYSDEC Bethany Acquisto, EnSol, Inc.

Enclosure: 2021 First Quarter Environmental Monitoring Report - Lockwood Ash Disposal Site

Environmental Monitoring Report First Quarter 2021 Lockwood Ash Disposal Site

Lockwood Hills LLC Dresden, New York

June 2021

Prepared by

Environmental Monitoring Report First Quarter 2021 Lockwood Ash Disposal Site

Lockwood Hills LLC Dresden, New York

June 2021

Prepared by EnSol, Inc. 661 Main Street Niagara Falls, New York 14301

Continu	•	Statia One we develop a such Massauramenta	C 4					
Section 5		Surface Water Sampling	5-1					
		4.1 6 NYCRR Part 703 Standards4.2 Time-Series Plots						
Section	4.	Groundwater Sampling	4-1					
Section	3.	Leachate Flow Metering	3-1					
Section	2.	Leachate Sampling	2-1					
Section	1.	Introduction						

Figures

Figure 1-1: Schematic Site Plan	. 1-3
Figure 6-1: Bedrock Groundwater Potentiometric Surface	. 6-2
Figure 6-2: Glacial Till Groundwater Potentiometric Surface	. 6-3
Figure 6-3: Potentiometric Surfaces for the First Quarter 2021	. 6-4

Tables

Table 1-1: Lockwood Ash Disposal Site's Routine Water Quality Parameters	-1
Table 1-2: Summary of Qualified Data Points1	-2
Table 2-1: Leachate Quality Summary- 1st Quarter 2021 Exceedances of 6 NYCRR Part 703 GA Standards 2	-2
Table 4-1: Groundwater Monitoring Wells	-1
Table 4-2: Groundwater Quality Summary - 1st Quarter 2021 Exceedances of 6 NYCRR Part 703 GA Standar	ds
	2
Table 5-1: Surface Water Summary – 1st Quarter 2021 Surface Water Evaluation for the Keuka Outlet	-2

Attachments

- 1 Environmental Monitoring Analytical Results
- 2 Time Series Plots Routine Parameters in the Leachate and Monitoring Wells
- 3 Flow Metering System Leachate Flow Rate Time Series

1. Introduction

Sampling activities were completed for the first quarter of 2021 between March 1 and 2, 2021 by Adirondack Environmental Services, Inc. (ADK) of Albany, New York. Sampling was performed for the routine water quality parameters this quarter consistent with the operational water quality monitoring program as detailed in the Site's Environmental Monitoring Plan (EMP). Laboratory analysis of the environmental samples was performed by ADK. The routine parameters established for the Lockwood Ash Disposal Site are summarized in Table 1-1. A full listing of the laboratory analytical results is provided in Attachment 1.

Field Parameters	Wet Chemical	Metals	
Dissolved Oxygen*	Alkalinity	Aluminum	Magnesium
рН	Ammonia	Arsenic	Manganese
Static Water Level	Chloride	Boron	Mercury
Turbidity	Hardness	Cadmium	Potassium
	Total Dissolved Solids	Calcium	Selenium
	Specific Conductivity	Copper	Sodium
	Sulfate	Iron	

TABLE 1-1: LOCKWOOD ASH DISPOSAL SITE'SROUTINE WATER QUALITY PARAMETERS

*For surface water samples only.

The locations of the facility's sampling points are illustrated on Figure 1-1. The original ash disposal site (OADS) is closed with final cover. The majority of the landfill Stages I and II shown in Figure 1-1 have been covered with intermediate cover under the *Layup Plan for the Lockwood Ash Disposal Site* prepared by Daigler Engineering, PC, dated May 2011.

Groundwater suppression system monitoring points, Groundwater Depression Drains 2 and 4, background monitoring well MW-8405, and leachate sampling location Under Drain 5 were not sampled during this quarterly event. They were reportedly dry as is typical for these locations. Further, no samples were taken from MW-8910SH because this well was reported as having inadequate recovery.

As required by the Site's EMP, Section 3.3.8, the data package for this routine sampling event was reviewed internally by the laboratory. Three data points were flagged by the laboratory for failing quality control limits. The affected data points and associated reason for qualification are presented in Table 1-2. These points were accepted as usable estimates. All remaining data was accepted without qualification.

Monitoring Point	Analyte	Laboratory Flag	Definition				
GW Dep Drain 3	Alkalinity	Н	Hold time exceeded				
MW 9401	Chloride	N	Matuin anilas halam accontable limita				
IVI W -8401	Sulfate	Ν	Matrix spike below acceptable limits				

TABLE 1-2: SUMMARY OF QUALIFIED DATA POINTS

2. Leachate Sampling

Primary leachate was sampled or observed at five separate locations, as follows:

- Discharge from leachate collection system under the OADS (Under Drain 1);
- Discharge from the northern overfill liner in Stage I (Under Drain 2);
- Discharge from the at grade liner system in Stage I (Under Drain 3);
- Discharge from Stage II (Under Drain 5); and,
- Treatment Pond influent, combined leachate from all Stages of the Landfill including the OADS (Inlet to Pond).

The parameters analyzed for in the leachate are the same as those for the groundwater samples, as identified in Table 1-1. A summary of the leachate sample results that exceed the corresponding Part 703 GA groundwater quality standard is included in Table 2-1. The results are consistent with historic data in which the primary leachate exhibits a distinct sodium–sulfate signature, with a correspondingly high total dissolved solids concentration in contrast to groundwater and surface water quality at the site. Boron, iron, magnesium, manganese, selenium, and turbidity concentrations in excess of the Part 703 GA standards are also typical of the leachate. Chloride concentrations in exceedance of the Part 703 GA standard are typical for Under Drain 2 and Under Drain 3, and to a lesser extent, the Inlet to Pond.

The Stage I and Stage II bottom liners include a secondary leachate collection and removal system (SLCRS) to monitor the primary geomembrane liner. Water quality in the SLCRS or Leak Detection System is also monitored quarterly. Results from this sample are included in Table 2-1.

The instantaneous flow rate measured in the Leak Detection System on the day the water quality samples were taken was 266 gallons per day (gpd). The lined area encompasses 15.8 acres, equating to a leakage rate of 17 gallons per acre per day (gpad), which is relatively high for the site, but still below the 20 gpad allowed by the regulations. Instantaneous flow measurements are taken by Lockwood personnel monthly during the site inspections as well. These manual measurements obtained during the months of January, February, and March 2021 were 25.4, 19.0, and 12.7 gpd, respectively. The leakage rates calculated from these monthly flow measurements in the Leak Detection System are 1.6, 1.2, and 0.8 gpad, respectively.

Primary and secondary leachate time-series plots are provided in Attachment 2. Changes in the leachate sewer to accommodate the flow meter in 2016 have replaced the 21" Inlet to Pond sampling point, which used to discharge leachate from only Stages I and II, including the overfill liner, with Inlet to Pond which is a single discharge including leachate from all stages of the landfill. Due to the change in composition, the Inlet to Pond data is distinguished from historic 21" Inlet to Pond data by a change in the symbol, and is not compared to the historic 21" Inlet to Pond data set.

Table 2-1

LOCKWOOD ASH DISPOSAL SITE

LEACHATE QUALITY SUMMARY

1st QUARTER 2021 EXCEEDANCES OF 6 NYCRR PART 703 GA STANDARDS

(3/1/2021)

	6 NYCRR Part 703	MONITORING POINT								
Parameter	GA Standard (TOGS 1.1.1 GA Guidance Value)	Leak Detection System	Under Drain 1	Under Drain 2	Under Drain 3	Inlet to Pond	Under Drain 5 **			
Color*	< 15 C.U.									
рН	6.5 < pH < 8.5									
Turbidity	< 5 NTU	14	132	128	27	44				
Total Dissolved Solids, TDS	500 mg/L	1,630	1,430	3,530	3,920	2,680				
Ammonia, NH₃	2,000 ug/L									
Antimony*, Sb	3 ug/L									
Arsenic, As	25 ug/L									
Barium*, Ba	1,000 ug/L									
Boron, B	1,000 ug/L	1,180	3,850	44,100	47,200	23,700				
Cadmium, Cd	5 ug/L									
Chloride, Cl ₂	250,000 ug/L			490,000	520,000	294,000				
Chromium*, Cr	50 ug/L									
Copper, Cu	200 ug/L									
Iron, Fe	300 ug/L		1,790	2,340		1,000				
Magnesium, Mg	(35,000 ug/L)	77,600	79,400	89,400	126,000	87,700				
Manganese, Mn	300 ug/L		547	1,080	431	399				
Fe + Mn	500 ug/L		2,337	3,420		1,399				
Mercury, Hg	0.7 ug/L									
Nickel*,Ni	100 ug/L									
Selenium, Se	10 ug/L	19	12	11	15	47				
Sodium, Na	20,000 ug/L	26,100	42,500	226,000	365,000	231,000				
Sulfate, SO4	250,000 ug/L	738,000	460,000	1,500,000	1,660,000	1,290,000				
Zinc*, Zn	(5,000 ug/L)									

* Baseline only; routine parameters were analyzed for during this quarter's sampling event.

** Reported as dry or as having insufficient recovery this quarter.

The leachate quality this quarter had several extremes. The following intralocation minima and maximum were observed during the first quarter of 2021:

- Calcium in Under Drain 3 An interlocation leachate maximum was observed corresponding to an upward trend. Although concentrations are variable, the upward trend appears around 2011, stagnated or possibly reversed trending between 2016 and 2019, before continuing the upward trend through this quarter.
- Chloride in Under Drain 2 and Inlet to Pond Intralocation maxima were observed for each location, continuing upward trends, which began around 2012 and in the third quarter of 2017, respectively. This marks the second quarter chloride at the Inlet to Pond has remained above the Part 703 GA standard.
- Hardness in Under Drain 3 An interlocation leachate maximum, corresponding to an interlocation leachate maximum for calcium, was observed. The upward trend for hardness has been reported previously and follows the pattern for calcium trending.
- Iron in Inlet to Pond An intralocation minimum was observed that may be associated with the beginning of a downward trend.
- Manganese in Inlet to Pond An intralocation minimum that does not appear to be associated with any trending.
- Selenium in the Leak Detection System and Inlet to Pond Intralocation maxima were observed at these locations and neither was associated with trending.

In addition to those trends associated with remarkable values, several other trends are notable.

Arsenic in Under Drain 1 and the Inlet to Pond have remained below the Part 703 GA standard for the past two quarters. It is too early to determine if the declines in arsenic are part of a trend.

Although concentrations are highly variable within a year, concentrations of boron in Under Drains 2 and 3 have been increasing since essentially the beginning of monitoring in 1994 despite a modest decline between 2008 and 2014. Boron in Under Drains 2 and 3 declined during the first quarter of 2021, after an intralocation maximum and second highest boron concentration were observed last quarter for Under Drains 2 and 3, respectively. Boron at the Inlet to Pond location has also been highly variable while exhibiting an upward trend.

Calcium in Under Drain 2 declined after an intrawell maximum was recorded last quarter but remains elevated relative to historic data, with upward trending still apparent. The downward trend reported for the Leak Detection System appears to have reestablished after two quarter with increasing values at the end of 2020.

Chloride in Under Drain 3 appears to be trending downward since the intralocation maximum observed during the second quarter of 2017.

Conductivity in the Leak Detection System continued a downward trend, which began in the fourth quarter of 2013 and is depressed relative to historic data. In Under Drain 3, conductivity has shown a downward trend since an intrawell maximum was observed in the fourth quarter of 2017. The long-term downward trend in conductivity seen in Under Drain 1 continued through the first quarter of 2021.

After an intrawell maximum value was observed for hardness in Under Drain 2 last quarter the hardness at this location has declined but remains elevated relative to historic data. The upward trend noted for this location will be watched to see if hardness increases again after this quarter.

The iron concentration in Under Drain 2 appears to be decreasing since the first quarter of 2009. Overall, recent iron concentrations have been consistent with those measured between 2005 and 2008. Iron in Under Drain 3 has been more variable than in Under Drain 2 but has decreased since the first quarter of 2017 and generally has been less than the Part 703GA standard since 2018.

Magnesium concentrations declined at all leachate sampling points this quarter after intrawell minima were observed for at all primary leachate sampling points last quarter. These declines do not appear to be associated with trending. After several years of general upward trending, the second lowest magnesium concentration for the Leak Detection System was observed this quarter.

The long-term gradual downward trend in manganese previously reported for Under Drain 1 continued through the first quarter of 2021 but was not associated with any extreme values.

Potassium results in Under Drain 2, Under Drain 3, and the Inlet to Pond declined after intrawell maxima were observed last quarter. However, potassium concentrations remain elevated in these locations.

After intralocation maxima sodium concentrations were observed during the fourth quarter for Under Drain 2, Under Drain 3, and the Inlet to Pond concentrations declined during the first quarter of 2021. Short-term upward trends beginning between late-2016 and 2018 are still apparent in all three locations, though the trend appears weaker in Under Drain 2. The downward trend previously reported for Under Drain 1 is no longer present as the sodium concentrations appear to have flattened out at levels just slightly above the Part 703GA standard. The downward trend reported for sulfate in Under Drain 1 may also be leveling out.

TDS in Under Drain 2 remains elevated relative to historic data but concentrations have declined for the last two quarters. TDS in Under Drain 3 has trended downward since the second quarter of 2017. TDS in the Leak Detection System has declined since the fourth quarter of 2017.

The leachate flow metering system, consisting of an ultrasonic level sensor positioned above a V-shaped flume, became operational during the third quarter of 2016. Greyline Logger Software, V2.86, was used to format the data into 24-hour intervals to obtain daily maximum, minimum, and average leachate flow rates. A time-series plot illustrating daily maximum, minimum, and average flow rates between July 1st, 2016 when the system was brought online, through March 31, 2021 is presented in Attachment 3.

Precipitation data presented in the time-series chart were obtained from the National Oceanic and Atmospheric Administration (NOAA) 5.1 NNW station until December 4, 2019. Some weather data were reported for this station after this date, however the most recent data reported from this station are from July 12, 2020. Precipitation data from December 5, 2019 until June 30, 2020 (barring the exception below) were obtained from Weather Underground Station KNYPENNY16, located approximately 1.78 miles north of Lockwood. The precipitation data from the KNYPENNY16 station does not distinguish between rain or snowfall, so any precipitation data reported after December 4, 2019 was reported as rainfall. Precipitation data was not available from this station between March 3 and March 17, 2020, February 25 and March 18, 2021, and March 21, 2021, so precipitation data from the NOAA Penn Yan Airport station, located 5.38 miles southeast of the site, were substituted.

The daily average leachate flow rate for the available time period was 14.34 gallons per minute (gpm) (\pm 5.04 std. dev.; n = 1,682) with a maximum and minimum of 155.86 (n = 1,666)¹ and 2.38 (n = 1,682) gpm, respectively. The maximum and minimum flow rate values did not change with the addition of data points from the first quarter of 2021.

Monthly average leachate flow rates observed in January, February, and March 2021 were 13.06, 13.99, and 16.07 gpm, respectively.

¹ Excludes 7/1/2016, 7/5/2016, 7/6/2016 (equipment calibration), and 10/23/2017, 10/24/2017, 9/17/2018, 9/18/2018, 6/24/2019 through 6/28/2019, 10/27/2020 through 10/28/2020, 10/30/2020, and 11/2/2020 through 11/3/2020 (dates associated with annual leachate line cleaning).

4. Groundwater Sampling

As described in the EMP, two water bearing units identified at the site comprise the critical stratigraphic section, including; a water table in the unconsolidated glacial deposits; and groundwater in the fractures of the underlying bedrock. Bedrock and overburden groundwater quality monitoring is carried out through sampling of five background and nine downgradient monitoring wells, as summarized in Table 4-1. Groundwater samples are also collected from the groundwater drains installed below the liner systems in the Original Ash Disposal Site, and the lined Stages I and II.

BACKO	GROUND	DOWNGRADIENT				
Glacial Till	Bedrock	Glacial Till	Bedrock			
MW-8908SH	MW-8908D	MW-1842	MW-8909D			
MW-8405	MW-8401	MW-8909SH	MW-8910D			
	MW-8404	MW-8910SH	MW-8911D			
		MW-8911SH	MW-8942			
		MW-9306				

 TABLE 4-1: GROUNDWATER MONITORING WELLS

4.1 6 NYCRR Part 703 Standards

This report includes a comparison of the groundwater data to Class GA groundwater standards contained in 6 NYCRR Part 703 as specified in Section 3.3.7.3 of the Environmental Monitoring Plan. Table 4-2 summarizes the sample results that exceed the corresponding Part 703 GA groundwater quality standards or TOGS 1.1.1 guidance values. Both background and downgradient wells onsite routinely exceed the Part 703 GA standards or guidance values for turbidity, total dissolved solids, iron, magnesium, sodium, and sulfate.

Boron concentrations in downgradient wells MW-8910D and MW-8911D are notable since boron is a leachate indicator. The boron concentration detected this quarter is typical of the water quality normally observed in MW-8911D. The boron concentration in MW-8910D was lower than all monitoring results since the fourth quarter of 1999.

Basic pH, at or above the upper limit of 8.5, is typical for MW-8909D.

Table 4-2 LOCKWOOD ASH DISPOSAL SITE GROUNDWATER QUALITY SUMMARY 1st QUARTER 2021 EXCEEDANCES OF 6 NYCRR PART 703 GA STANDARDS (3/1-2/2021)																	
6 NYCRR Part 703 GA										,							
Parameter	Standard (TOGS 1.1.1		Ba	ckground \	Nells	1				Dowr	ngradient W	ells				GW Dep	GW Dep
	GA Guidance Value)	8401D	8404D	8405S**	8908D	8908S	1842	8909D	8909S	8910D	8910S**	8911D	8911S	8942D	9306S	Dialiti	Dialit 3
Color*	< 15 C.U.																
рН	6.5 < pH < 8.5							9.2								1	
Turbidity	< 5 NTU		89				176	> 999						39	8	43	56
Total Dissolved Solids, TDS	500 mg/L	595	520		965	1,020	665	775		725		580	580	735	575	1,330	
Ammonia, NH₃	2,000 ug/l																
Antimony*, Sb	3 ug/L															1	
Arsenic, As	25 ug/L															1	
Barium*, Ba	1,000 ug/L															1	
Boron, B	1,000 ug/L									1,670		1,050				2,020	
Cadmium, Cd	5 ug/L																
Chloride, Cl ₂	250,000 ug/L															1	
Chromium*, Cr	50 ug/L															1	
Copper, Cu	200 ug/L															1	
Iron, Fe	300 ug/L				969		309	2,920					385	439	632	1	
Magnesium, Mg	(35,000 ug/L)				65,200	63,800	43,800	43,400						68,800	60,400	78,000	
Manganese, Mn	300 ug/L															1	
Fe + Mn	500 ug/L				1,068			3,013						549	691	1	
Mercury, Hg	0.7 ug/L															1	
Nickel*, Ni	100 ug/L															1	
Selenium, Se	10 ug/L																
Sodium, Na	20,000 ug/L	90,300			32,600	33,000	57,200	168,000	59,700	69,800		99,600	58,000	39,700	20,700	32,200	1
Sulfate, S0 ₄	250,000 ug/L				293,000	319,000	289,000						254,000	265,000		516,000	1
Zinc*, Zn	(5,000 ug/L)																1

*Baseline only; routine parameters were analyzed for during this quarter's sampling event.

**Dry or insufficient recovery

4.2 Time-Series Plots

The time-series plots were updated for the March 2021 sampling event and are presented in Attachment 2. These graphs are used to identify atypical data and possible trending.

Groundwater quality was fairly unremarkable this quarter with some extremes. The following intralocation minima and maxima were observed during the first quarter of 2021:

- Chloride in MW-8910D An intrawell minimum was recorded this quarter, superseding the value from the fourth quarter of 2020. This value was associated with a general downward trend that began in the fourth quarter of 2014.
- pH in MW-8909SH, MW-8910D, and MW-8911SH Intrawell minima were observed in all three wells and do not appear to be associated with trending, although trends may be starting to emerge with large declines in pH seen over the last two to three quarters.
- TDS in MW-9306SH An intrawell maximum value was recorded, marking the first time that the Part 703 GA standard has been exceeded in this well since the first quarter of 2003. This extreme value was associated with an upward trend that began after the second quarter of 2019.

In addition to those trends associated with remarkable values, several other trends are notable.

Aluminum in MW-8910D is variable within a year but appears to be increasing since the third quarter of 2017. Despite this upward trend the aluminum concentration in this well is still lower than most of the historic data for this well.

Boron in MW-8909D remained below the Part 703 GA standard for the third quarter in a row and appears to be trending downward since the third quarter of 2019. The concentration of boron in MW-8910D and MW-8911D remain elevated relative to early 1990s data and the Part 703 GA standard, however concentrations in both wells appear to be declining towards the standard since peaks in 2014 and 2017, respectively. After trending upwards for several years, the upward trend previously reported for MW-8911SH appears to have stalled.

The calcium concentration in MW-8910D continued its downward trend through the first quarter of 2021. The gradual upward trend for calcium in MW-8911SH and the downward trend for MW-8911D appear to have stagnated. Similar patterns are seen in the magnesium and hardness datasets for all three wells. Magnesium concentrations in MW-8942D and MW-8908D have generally increased for the duration of monitoring, with increases being more gradual in MW-8908D. While magnesium concentrations were initially higher in the upgradient well, MW-8908D, they have been similar between the two wells since around 2006. Their magnesium concentrations are now approximately twice the guidance value but appear to be leveling off. Similarly, magnesium in MW-8908SH appears to have a long term upward trend as well.

Conductivity in MW-8910D has generally decreased since the second quarter of 2014, although this trend has not been associated with any extreme values. Conductivity is now in the same range as data from 1993 and 1994.

Iron has been variable in MW-8942 but has generally decreased since an intrawell maximum recorded in the second quarter of 2012. Though the general trend remains downward iron in this well is once again above the Part 703 GA standard. Manganese in this well appears to be generally trending downwards since the third quarter of 2017. This trend is associated with values below the Part 703 GA standard representing the longest duration of time manganese concentrations in this well have met the standard since the early 2000s. Gradual downward trends for manganese and iron have been observed in MW-8401 as well.

Upward trending for potassium is no longer apparent in most background and downgradient wells in the glacial till. The potassium concentration in MW-1842 remains nearly one order of magnitude above the other glacial till wells but does not appear to be trending. Upward trends, which began around 2006 are still apparent in MW-9306SH and MW-8401.

Sodium in MW-8908SH appears to be trending upward since the second quarter of 2019, with this quarter's result nearly tying the intrawell maximum for this well, which was observed in the first quarter of 1991. The downward trends previously reported for MW-8909SH and MW-8401 appear to have stagnated.

Sulfate is trending downwards in bedrock wells MW-8910D and MW-8911D. Sulfate in MW-8910D began trending steadily downward after the third quarter of 2015. This trend stagnated between the first quarter of 2018 and the third quarter of 2020 and now appears to be reestablishing with this quarter's result marking the second quarter in a row sulfate in this well has been below the standard. This has not occurred in this well since the 1990s. Sulfate in MW-8911D has been trending downward since the second quarter of 2017 and has been below the standard for several years. In contrast, sulfate is trending upwards in the glacial till well MW-8911SH. The upward trend in MW-8911SH began in the 1990s and this quarter's result was the third highest value recorded at this location, exceeding the Part 703 GA standard for only fifth time.

TDS appears to be trending upwards in MW-8911SH since 1990s. TDS in this well was near its intrawell maximum and was above the Part 703 GA standard for only the fifth time in the duration of monitoring. Turbidity in this well appears to be generally trending downward since the last quarter of 2018, with this quarter's result marking the first time turbidity was below detection in this well since the second quarter of 2018.

Calcium, magnesium, hardness, sulfate, and TDS had observable increasing trends in the background well MW-8908SH as an apparent driving force until around 2015 when following a peak in concentrations, downward trends developed. After reaching a relative low point in the second quarter of 2019, the increasing trends in this background appeared to be re-emerging.

Surface water samples are collected from points in the Keuka Outlet 100 feet upstream (Keuka Upstream) and downstream (Keuka Downstream) of the Treatment Pond discharge location. Table 5-1 summarizes the surface water quality in the Keuka Outlet for the first quarter of 2021. Most parameters showed similar concentrations between the upstream and downstream during all four sampling events. It is noteworthy that intralocation maximum values for turbidity were observed for both the upstream and downstream locations, corresponding to elevated levels of metals, relative to historic data. The increase in turbidity is not attributed to the Facility because the Treatment Pond was not actively discharging during the monitoring event. Nor was the turbidity storm related since the monitoring event date was not preceded by a significant precipitation event.

Only one significant difference (greater than 25%) in the water quality between upstream and downstream samples occurred during the first quarter of 2021. This difference was in manganese (+26%). Other notable differences (greater than 10%) between upstream and downstream samples during the first quarter of 2021 include aluminum (-22.2%), arsenic (+13.6%), and turbidity (+14.7%).

Table 5-1LOCKWOOD ASH DISPOSAL SITESURFACE WATER SUMMARY1st QUARTER 2021 SURFACE WATER EVALUATION FOR THE KEUKA OUTLET(3/1/2021)								
Parameter	Units	Keuka Upstream	Keuka Downstream	Difference	% Increase			
Alkalinity	mg/l	120	120					
Aluminum	ug/l	351	273	-78	-22.2%			
Ammonia	mg/l	< 0.1	< 0.1					
Antimony	ug/l	NM	NM					
Arsenic	ug/l	8.15	9.26	1	13.6%			
Barium	ug/l	NM	NM					
Boron	ug/l	< 50	< 50					
Cadmium	ug/l	< 1.4	< 1.4					
Calcium	ug/l	71,300	73,000	1,700	2.4%			
Chloride	mg/l	66.1	64.7	-1.4	-2.1%			
Chromium	ug/l	NM	NM					
Color	C.U.	NM	NM					
Conductivity	µmhos/cm	571	569	-2	-0.4%			
Copper	ug/l	< 1.9	< 1.9					
DO	mg/l	8.02	7.30	-0.7	-9.0%			
Hardness	mg/l	247	251	4	1.6%			
Iron	ug/l	591	600	9	1.5%			
Magnesium	ug/l	16,700	16,800	100	0.6%			
Manganese	ug/l	32.1	40.4	8	26%			
Mercury	ug/l	< 0.16	< 0.16					
Nickel	ug/l	NM	NM					
рН	SU	8.3	8.3					
Potassium	ug/l	5,670	5,590	-80	-1.4%			
Selenium	ug/l	< 3.4	< 3.4					
Sodium	ug/l	29,600	28,200	-1,400	-4.7%			
Sulfate	mg/l	37.9	37.7	-0.2	-0.5%			
TDS	mg/l	495	470	-25	-5.1%			
тос	mg/l	NM	NM					
Turbidity	NTU	743	852	109	14.7%			
Zinc	ua/l	< 3.8	< 3.8					

NM = Not Measured, baseline only; routine parameters measured this quarter.

Static groundwater levels are taken on a quarterly basis as directed by the Site's EMP, Section 3.3.6.1. Water level data has been analyzed since the first quarter of 2003. Time-series of the depth to water measurements and their corresponding groundwater elevation data are included at the end of Attachment E. The potentiometric surfaces of representative minimum and maximum groundwater elevations and the measurements from the first quarter of 2021 are shown on Figure 6-1 and Figure 6-2 for the bedrock and glacial till water bearing units, respectively.

Water levels in several wells remain atypical. The water level in OW-7741 was depressed during the last two quarters of 2020 but returned to a more typical value during the first quarter of 2021. The water level in the glacial till well MW-8402 has been unusually low for the past seven quarters. Water levels appeared to be declining, but this downward trend appears to have stagnated over the last three quarters. During 2020, the water elevation in MW-8403 increased slightly from the intralocation minimum observed during the fourth quarter of 2019 but remains depressed, with the first quarter 2021 result within one hundredth of a foot of the intralocation minimum. The water elevation in MW-8911D became depressed during the second quarter of 2020 and remained so the first quarter of 2021. After being slightly depressed during the fourth quarter of 2020, MW-8404 was elevated during the first quarter of 2021.

After a nearly site-wide depression in groundwater levels in the third quarter of 2020, it appears that many of the wells not mentioned above have returned to normal levels, while some remain slightly depressed.

Figure 6-3 is a comparison between current bedrock and glacial till potentiometric surfaces. Groundwater flow appears to be predominately southeast to northwest in the southern half of the site. In the northern half of the site, groundwater flow takes on a stronger downward gradient and typically shows a distinct angle towards the Keuka Outlet in the northwestern corner, especially in the glacial till.

The vertical gradient between the OW-8402 (glacial till) and OW-8403 (bedrock) couplet remains upward (average = -0.02 since the third quarter of 2019) for the seventh quarter in a row, but the strength of this upward gradient decreased since it was first observed during the third quarter of 2019 and has remained steady since the third quarter of 2020. A downward gradient (average = 0.04 prior to the third quarter of 2019) typically exists between these monitoring wells. The downward vertical gradient in the MW-8908D/SH couplet has strengthened since no gradient was observed in the third quarter of 2020. During the first quarter of 2021 this gradient was stronger than all previous quarters apart from the intra-couplet maximum observed during the fourth quarter of 2005.

Except for the vertical gradients discussed above, vertical gradients at the site were typical during the first quarter of 2021.

Attachment 1

Environmental Monitoring Analytical Results

EnSol, Inc.

Experience is the solution 314 North Pearl Street

Albany, New York 12207 (800) 848-4983

(518) 434-4546

Fax (518) 434-0891

June 22, 2021

Chris Gill Lockwood Hills LLC 590 Plant Road, PO Box 187 Dresden, NY 14441

TEL: (315) 536-2359

Work Order No: 210303020 PO#: 20-0099AC

RE: Lockwood Ash Landfill Quarterly

Dear Chris Gill:

Adirondack Environmental Services, Inc received 31 samples on 3/3/2021 for the analyses presented in the following report.

Please see case narrative for specifics on analysis.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

sall 34

ELAP#: 10709

Christopher Hess QA Manager

CASE NARRATIVE

Lockwood Hills LLC Lockwood Ash Landfill

Quarterly

Date: 22-Jun-21

Lab WorkOrder: 210303020

The sampling was performed in accordance with the AES field sampling procedures and/or the client specified sampling procedures. Sample containers were supplied by Adirondack Environmental Services.

This is an updated report to correct the Alkalinity results for samples 1842, 8404 and 8908-D.

Definitions - RL: Reporting Limit DF: Dilution factor

Qualifiers:	ND : Not Detected at reporting limit	C: CCV below acceptable Limits
	J: Analyte detected below quantitation limit	C+: CCV above acceptable Limits
	B: Analyte detected in Blank	S: LCS Spike recovery is below acceptable limits
	X : Exceeds maximum contamination limit	S+: LCS Spike recovery is above acceptable limits
	H: Hold time exceeded	Z: Duplication outside acceptable limits
	N: Matrix Spike below acceptable limits	T : Tentatively Identified Compound-Estimated
	N+: Matrix Spike is above acceptable limits	E :Above quantitation range-Estimated

Note : All Results are reported as wet weight unless noted

The results relate only to the items tested. Information supplied by the client is assumed to be correct.

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / Quarterly

PO#: 20-0099AC

Date: 22-Jun-21

 Client Sample ID:
 1842

 Collection Date:
 3/2/2021 7:35:00 AM

 Lab Sample ID:
 210303020-001

 Matrix:
 GROUNDWATER

Analyses	Result	RL Qual	Units	DF	Date Analyzed
FIELD-PH, RES CL2, AND TEMP ARE NO	OT ELAP CE	RTIFIABLE			Analyst: FLD
pH (E150.1) Temperature (E170.1) Turbidity (E180.1)	7.4 5 176	1.0	S.U. deg C NTU		3/2/2021 7:35:00 AM 3/2/2021 7:35:00 AM 3/2/2021 7:35:00 AM
ICP METALS - EPA 200.7					Analyst: KH
(Prep: SW3010A - 3/4/202	1)				
Aluminum	ND	100	μg/L	1	3/4/2021 1:30:00 PM
Arsenic	ND	5.00	μg/L	1	3/4/2021 1:30:00 PM
Boron	254	50.0	μg/L	1	3/4/2021 1:30:00 PM
Cadmium	ND	5.00	μg/L	1	3/4/2021 1:30:00 PM
Calcium	43500	50.0	μg/L	1	3/4/2021 1:30:00 PM
Copper	ND	5.00	μg/L	1	3/4/2021 1:30:00 PM
Iron	309	50.0	μg/L	1	3/4/2021 1:30:00 PM
Magnesium	43800	50.0	μg/L	1	3/4/2021 1:30:00 PM
Manganese	ND	20.0	μg/L	1	3/4/2021 1:30:00 PM
Potassium	19100	50.0	μg/L	1	3/4/2021 1:30:00 PM
Selenium	ND	5.00	μg/L	1	3/4/2021 1:30:00 PM
Sodium	57200	5000	μg/L	10	3/4/2021 1:34:00 PM
HARDNESS - EPA 200.7 REV 4.4					Analyst: KH
Total Hardness (As CaCO3)	289	5	mg/L CaCO3	1	3/4/2021
MERCURY - EPA 245.1 REV 3.0 (Prep: E245.1 - 3/3/202	1)				Analyst: AVB
Mercury	ND	0.0002	mg/L	1	3/4/2021 8:35:55 AM
ANIONS BY ION CHROMATOGRAPHY -	EPA 300.0 F	REV 2.1			Analyst: CC
Chloride	2 07	2 00	ma/l	2	3/24/2021 3·31·46 AM
Sulfate	2.07	10.0	mg/L	10	3/24/2021 3:50:49 AM
ALKALINITY TO PH 4.5 -SM 2320B-2011					Analyst: CP
Alkalinity, Total (As CaCO3)	130	10	mgCaCO3/L	1	3/8/2021 3:00:00 PM
AMMONIA (NON-DISTILLED) - EPA 350.	1 REV 2.0				Analyst: KB
Nitrogen, Ammonia (As N)	ND	0.1	mg/L	1	3/16/2021 3:18:53 PM

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / QuarterlyPO#:20-0099AC

Date: 22-Jun-21

 Client Sample ID:
 1842

 Collection Date:
 3/2/2021 7:35:00 AM

 Lab Sample ID:
 210303020-001

 Matrix:
 GROUNDWATER

nalyses Result		RL Qual Units		DF	Date Analyzed	
CONDUCTANCE AT 25C - SM 2510	B-2011				Analyst: BG	
Specific Conductance 762		1	µmhos/cm	1	3/17/2021	
TOTAL DISSOLVED SOLIDS - SM 2	540C-2011				Analyst: JH	
TDS (Residue, Filterable)	665	5	mg/L	1	3/8/2021	

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / Quarterly

PO#: 20-0099AC

Date: 22-Jun-21

 Client Sample ID:
 8404

 Collection Date:
 3/1/2021 4:20:00 PM

 Lab Sample ID:
 210303020-002

 Matrix:
 GROUNDWATER

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
FIELD-PH, RES CL2, AND TEMP AR	Analyst: FLD				
pH (E150.1) Temperature (E170.1) Turbidity (E180.1)	7.0 7 89	1.0	S.U. deg C NTU		3/1/2021 4:20:00 PM 3/1/2021 4:20:00 PM 3/1/2021 4:20:00 PM
					Analyst: KH
(Prep: SW3010A - 3/4/	(2021)				Analyst. KI
Aluminum	ND	100	μg/L	1	3/4/2021 2:07:00 PM
Arsenic	ND	5.00	μg/L	1	3/4/2021 2:07:00 PM
Boron	109	50.0	μg/L	1	3/4/2021 2:07:00 PM
Cadmium	ND	5.00	μg/L	1	3/4/2021 2:07:00 PM
Calcium	104000	50.0	μg/L	1	3/4/2021 2:07:00 PM
Copper	9.88	5.00	μg/L	1	3/4/2021 2:07:00 PM
Iron	75.0	50.0	μg/L	1	3/4/2021 2:07:00 PM
Magnesium	20300	50.0	μg/L	1	3/4/2021 2:07:00 PM
Manganese	ND	20.0	μg/L	1	3/4/2021 2:07:00 PM
Potassium	893	50.0	μg/L	1	3/4/2021 2:07:00 PM
Selenium	ND	5.00	μg/L	1	3/4/2021 2:07:00 PM
Sodium	8510	500	μg/L	1	3/4/2021 2:07:00 PM
HARDNESS - EPA 200.7 REV 4.4					Analyst: KH
Total Hardness (As CaCO3)	344	5	mg/L CaCO3	1	3/4/2021
MERCURY - EPA 245.1 REV 3.0 (Prep: E245.1 - 3/3/	(2021)				Analyst: AVB
Mercury	ND	0.0002	mg/L	1	3/4/2021 8:37:38 AM
ANIONS BY ION CHROMATOGRAPI	HY - EPA 300.0 R	EV 2.1			Analyst: CC
Chloride	ND	2.00	mg/L	2	3/18/2021 6:46:09 PM
Sulfate	69.4	2.00	mg/L	2	3/18/2021 6:46:09 PM
ALKALINITY TO PH 4.5 -SM 2320B-2	2011				Analyst: CP
Alkalinity, Total (As CaCO3)	260	10	mgCaCO3/L	1	3/8/2021 3:00:00 PM
AMMONIA (NON-DISTILLED) - EPA	350.1 REV 2.0				Analyst: KB
Nitrogen, Ammonia (As N)	ND	0.1	mg/L	1	3/16/2021 3:20:33 PM

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / QuarterlyPO#:20-0099AC

Date: 22-Jun-21

 Client Sample ID:
 8404

 Collection Date:
 3/1/2021 4:20:00 PM

 Lab Sample ID:
 210303020-002

 Matrix:
 GROUNDWATER

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
CONDUCTANCE AT 25C - SM 2510E	3-2011				Analyst: BG
Specific Conductance	631	1	µmhos/cm	1	3/17/2021
TOTAL DISSOLVED SOLIDS - SM 2	540C-2011				Analyst: JH
TDS (Residue, Filterable)	520	5	mg/L	1	3/8/2021

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / Quarterly

PO#: 20-0099AC

Date: 22-Jun-21

 Client Sample ID:
 8908-D

 Collection Date:
 3/1/2021 3:10:00 PM

 Lab Sample ID:
 210303020-003

 Matrix:
 GROUNDWATER

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
FIELD-PH, RES CL2, AND TEMP A	RE NOT ELAP CE	RTIFIABLE			Analyst: FLD
pH (E150.1) Temperature (E170.1) Turbidity (E180.1)	7.1 8 < 1	1.0	S.U. deg C NTU		3/1/2021 3:10:00 PM 3/1/2021 3:10:00 PM 3/1/2021 3:10:00 PM
ICP METALS - EPA 200.7					Analyst: KH
(Prep: SW3010A - 3/4	4/2021)				,
Aluminum Arsenic Boron Cadmium Calcium Copper Iron Magnesium Manganese Potassium Selenium Sodium	ND 6.16 233 ND 151000 ND 969 65200 99.1 3090 ND 32600	100 5.00 50.0 50.0 50.0 50.0 50.0 50.0 5	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1 1 1 1 1 1 1 1 1 1	3/4/2021 2:12:00 PM 3/4/2021 2:12:00 PM
HARDNESS - EPA 200.7 REV 4.4					Analyst: KH
Total Hardness (As CaCO3)	646	5	mg/L CaCO3	1	3/4/2021
MERCURY - EPA 245.1 REV 3.0 (Prep: E245.1 - 3/3	3/2021)				Analyst: AVB
Mercury	ND	0.0002	mg/L	1	3/4/2021 8:39:17 AM
ANIONS BY ION CHROMATOGRAF	PHY - EPA 300.0 F	EV 2.1			Analyst: CC
Chloride Sulfate	12.0 293	2.00 10.0	mg/L mg/L	2 10	3/18/2021 7:05:11 PM 3/18/2021 8:42:01 PM
ALKALINITY TO PH 4.5 -SM 2320B	-2011				Analyst: CP
Alkalinity, Total (As CaCO3)	370	10	mgCaCO3/L	1	3/8/2021 3:00:00 PM
AMMONIA (NON-DISTILLED) - EPA	350.1 REV 2.0				Analyst: KB
Nitrogen, Ammonia (As N)	0.5	0.1	mg/L	1	3/16/2021 3:22:13 PM

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / QuarterlyPO#:20-0099AC

Date: 22-Jun-21

 Client Sample ID:
 8908-D

 Collection Date:
 3/1/2021 3:10:00 PM

 Lab Sample ID:
 210303020-003

 Matrix:
 GROUNDWATER

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
CONDUCTANCE AT 25C - SM 2510)B-2011				Analyst: BG
Specific Conductance	1160	1	µmhos/cm	1	3/17/2021
TOTAL DISSOLVED SOLIDS - SM	2540C-2011				Analyst: JH
TDS (Residue, Filterable)	965	5	mg/L	1	3/8/2021

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / Quarterly

PO#: 20-0099AC

Date: 22-Jun-21

 Client Sample ID:
 8908-SH

 Collection Date:
 3/1/2021 3:20:00 PM

 Lab Sample ID:
 210303020-004

 Matrix:
 GROUNDWATER

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
FIELD-PH, RES CL2, AND TEMP AF	Analyst: FLD				
pH (E150.1) Temperature (E170.1) Turbidity (E180.1)	7.0 7 < 1	1.0	S.U. deg C NTU		3/1/2021 3:20:00 PM 3/1/2021 3:20:00 PM 3/1/2021 3:20:00 PM
ICP METALS - EPA 200.7					Analyst: KH
(Prep: SW3010A - 3/4	/2021)				
Aluminum	ND	100	μg/L	1	3/4/2021 2:16:00 PM
Arsenic	5.44	5.00	μg/L	1	3/4/2021 2:16:00 PM
Boron	157	50.0	μg/L	1	3/4/2021 2:16:00 PM
Cadmium	ND	5.00	μg/L	1	3/4/2021 2:16:00 PM
Calcium	176000	50.0	μg/L	1	3/4/2021 2:16:00 PM
Copper	15.3	5.00	μg/L	1	3/4/2021 2:16:00 PM
Iron	204	50.0	μg/L	1	3/4/2021 2:16:00 PM
Magnesium	63800	50.0	μg/L	1	3/4/2021 2:16:00 PM
Manganese	83.2	20.0	μg/L	1	3/4/2021 2:16:00 PM
Potassium	2590	50.0	μg/L	1	3/4/2021 2:16:00 PM
Selenium	ND	5.00	μg/L	1	3/4/2021 2:16:00 PM
Sodium	33000	500	µg/L	1	3/4/2021 2:16:00 PM
HARDNESS - EPA 200.7 REV 4.4					Analyst: KH
Total Hardness (As CaCO3)	701	5	mg/L CaCO3	1	3/4/2021
MERCURY - EPA 245.1 REV 3.0 (Prep: E245.1 - 3/3	/2021)				Analyst: AVB
Mercury	ND	0.0002	mg/L	1	3/4/2021 8:40:57 AM
ANIONS BY ION CHROMATOGRAP	HY - EPA 300.0 R	EV 2.1			Analyst: CC
Chloride	10.5	2.00	mg/L	2	3/19/2021 10:08:01 PM
Sulfate	319	10.0	mg/L	10	3/19/2021 11:44:49 PM
ALKALINITY TO PH 4.5 -SM 2320B-	2011				Analyst: CP
Alkalinity, Total (As CaCO3)	370	10	mgCaCO3/L	1	3/8/2021 3:00:00 PM
AMMONIA (NON-DISTILLED) - EPA	350.1 REV 2.0				Analyst: KB
Nitrogen, Ammonia (As N)	ND	0.1	mg/L	1	3/16/2021 3:23:50 PM

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / QuarterlyPO#:20-0099AC

Date: 22-Jun-21

 Client Sample ID:
 8908-SH

 Collection Date:
 3/1/2021 3:20:00 PM

 Lab Sample ID:
 210303020-004

 Matrix:
 GROUNDWATER

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
CONDUCTANCE AT 25C - SM 251	0B-2011				Analyst: BG
Specific Conductance	1200	1	µmhos/cm	1	3/17/2021
TOTAL DISSOLVED SOLIDS - SM	2540C-2011				Analyst: JH
TDS (Residue, Filterable)	1020	5	mg/L	1	3/8/2021

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / Quarterly

PO#: 20-0099AC

Date: 22-Jun-21

 Client Sample ID:
 8909-D

 Collection Date:
 3/1/2021 3:50:00 PM

 Lab Sample ID:
 210303020-005

 Matrix:
 GROUNDWATER

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
FIELD-PH, RES CL2, AND TEMP AR	E NOT ELAP CE	RTIFIABLE			Analyst: FLD
pH (E150.1) Temperature (E170.1) Turbidity (E180.1)	9.2 8 > 999	1.0	S.U. deg C NTU		3/1/2021 3:50:00 PM 3/1/2021 3:50:00 PM 3/1/2021 3:50:00 PM
ICP METALS - EPA 200.7					Analyst: KH
(Prep: SW3010A - 3/4/	2021)				
Aluminum Arsenic Boron Cadmium Calcium Copper Iron Magnesium Manganese Potassium Selenium Sodium	1060 ND 932 ND 11400 ND 2920 2460 93.0 1490 ND 168000	100 5.00 50.0 50.0 50.0 50.0 50.0 50.0 5	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1 1 1 1 1 1 1 1 1 1 1 1	3/4/2021 2:20:00 PM 3/4/2021 2:20:00 PM
HARDNESS - EPA 200.7 REV 4.4					Analyst: KH
Total Hardness (As CaCO3)	39	5	mg/L CaCO3	1	3/4/2021
MERCURY - EPA 245.1 REV 3.0 (Prep: E245.1 - 3/3/	2021)				Analyst: AVB
Mercury	ND	0.0002	mg/L	1	3/4/2021 8:42:37 AM
ANIONS BY ION CHROMATOGRAPH	HY - EPA 300.0 R	EV 2.1			Analyst: CC
Chloride Sulfate	4.84 108	2.00 2.00	mg/L mg/L	2 2	3/20/2021 12:42:06 AM 3/20/2021 12:42:06 AM
ALKALINITY TO PH 4.5 -SM 2320B-2	2011				Analyst: CP
Alkalinity, Total (As CaCO3)	270	10	mgCaCO3/L	1	3/8/2021 3:00:00 PM
AMMONIA (NON-DISTILLED) - EPA	350.1 REV 2.0				Analyst: KB
Nitrogen, Ammonia (As N)	0.5	0.1	mg/L	1	3/16/2021 3:27:04 PM

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / QuarterlyPO#:20-0099AC

Date: 22-Jun-21

 Client Sample ID:
 8909-D

 Collection Date:
 3/1/2021 3:50:00 PM

 Lab Sample ID:
 210303020-005

 Matrix:
 GROUNDWATER

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
CONDUCTANCE AT 25C - SM 251	0B-2011				Analyst: BG
Specific Conductance	750	1	µmhos/cm	1	3/17/2021
TOTAL DISSOLVED SOLIDS - SM	2540C-2011				Analyst: JH
TDS (Residue, Filterable)	775	5	mg/L	1	3/8/2021

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / Quarterly

PO#: 20-0099AC

Date: 22-Jun-21

 Client Sample ID:
 8909-SH

 Collection Date:
 3/1/2021 12:50:00 PM

 Lab Sample ID:
 210303020-006

 Matrix:
 GROUNDWATER

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
FIELD-PH, RES CL2, AND TEMP ARE I	Analyst: FLD				
pH (E150.1) Temperature (E170.1) Turbidity (E180.1)	6.7 8 < 1	1.0	S.U. deg C NTU		3/1/2021 12:50:00 PM 3/1/2021 12:50:00 PM 3/1/2021 12:50:00 PM
ICP METALS - EPA 200.7					Analyst: KH
(Prep: SW3010A - 3/4/20)	21)				
Aluminum	ND	100	μg/L	1	3/4/2021 2:39:00 PM
Arsenic	5.64	5.00	μg/L	1	3/4/2021 2:39:00 PM
Boron	261	50.0	μg/L	1	3/4/2021 2:39:00 PM
Cadmium	ND	5.00	μg/L	1	3/4/2021 2:39:00 PM
Calcium	32400	50.0	μg/L	1	3/4/2021 2:39:00 PM
Copper	ND	5.00	μg/L	1	3/4/2021 2:39:00 PM
Iron	73.6	50.0	μg/L	1	3/4/2021 2:39:00 PM
Magnesium	16500	50.0	μg/L	1	3/4/2021 2:39:00 PM
Manganese	ND	20.0	μg/L	1	3/4/2021 2:39:00 PM
Potassium	2120	50.0	μg/L	1	3/4/2021 2:39:00 PM
Selenium	ND	5.00	μg/L	1	3/4/2021 2:39:00 PM
Sodium	59700	5000	μg/L	10	3/4/2021 2:42:00 PM
HARDNESS - EPA 200.7 REV 4.4					Analyst: KH
Total Hardness (As CaCO3)	148	5	mg/L CaCO3	1	3/4/2021
MERCURY - EPA 245.1 REV 3.0 (Prep: E245.1 - 3/3/202	21)				Analyst: AVB
Mercury	ND	0.0002	mg/L	1	3/4/2021 8:44:17 AM
ANIONS BY ION CHROMATOGRAPHY	- EPA 300.0 F	EV 2.1			Analyst: CC
Chloride	0 60	2 00	ma/l	2	3/20/2021 1·20·10 AM
Sulfata	∠.0U 129	2.00	mg/L	2	3/20/2021 1.20.10 AW
Sunate	130	2.00	ilig/L	2	3/20/2021 1.20.10 AW
ALKALINITY TO PH 4.5 -SM 2320B-201	1				Analyst: CP
Alkalinity, Total (As CaCO3)	160	10	mgCaCO3/L	1	3/8/2021 3:00:00 PM
AMMONIA (NON-DISTILLED) - EPA 350	AMMONIA (NON-DISTILLED) - EPA 350.1 REV 2.0				Analyst: KB
Nitrogen, Ammonia (As N)	ND	0.1	mg/L	1	3/16/2021 3:28:41 PM
CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / QuarterlyPO#:20-0099AC

Date: 22-Jun-21

 Client Sample ID:
 8909-SH

 Collection Date:
 3/1/2021 12:50:00 PM

 Lab Sample ID:
 210303020-006

 Matrix:
 GROUNDWATER

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
CONDUCTANCE AT 25C - SM 2510	B-2011				Analyst: BG
Specific Conductance	545	1	µmhos/cm	1	3/17/2021
TOTAL DISSOLVED SOLIDS - SM 2				Analyst: JH	
TDS (Residue, Filterable)	485	5	mg/L	1	3/8/2021

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill

Reference: Lockwood Ash Landfill / Quarterly PO#: 20-0099AC **Date:** 22-Jun-21

 Client Sample ID:
 8910-D

 Collection Date:
 3/1/2021 1:50:00 PM

 Lab Sample ID:
 210303020-007

 Matrix:
 GROUNDWATER

Analyses	Result	RL Qual	Units	DF	Date Analyzed
FIELD-PH, RES CL2, AND TEMP ARE N	OT ELAP CE	RTIFIABLE			Analyst: FLD
pH (E150.1) Temperature (E170.1) Turbidity (E180.1)	6.9 10 < 1	1.0	S.U. deg C NTU		3/1/2021 1:50:00 PM 3/1/2021 1:50:00 PM 3/1/2021 1:50:00 PM
ICP METALS - EPA 200.7					Analyst: KH
(Prep: SW3010A - 3/4/202	1)				
Aluminum Arsenic Boron Cadmium Calcium Copper Iron Magnesium Manganese Potassium Selenium Sodium	ND ND 1670 ND 55900 ND 16900 72.0 3030 ND 69800	100 5.00 50.0 50.0 50.0 50.0 50.0 50.0 5	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1 1 1 1 1 1 1 1 1 1 1 1 1	3/4/2021 2:49:00 PM 3/4/2021 2:49:00 PM
HARDNESS - EPA 200.7 REV 4.4					Analyst: KH
Total Hardness (As CaCO3)	209	5	mg/L CaCO3	1	3/4/2021
MERCURY - EPA 245.1 REV 3.0 (Prep: E245.1 - 3/3/202	1)				Analyst: AVB
Mercury	ND	0.0002	mg/L	1	3/4/2021 8:49:18 AM
ANIONS BY ION CHROMATOGRAPHY -	EPA 300.0 F	EV 2.1			Analyst: CC
Chloride Sulfate	13.7 246	2.00 10.0	mg/L mg/L	2 10	3/23/2021 12:11:37 AM 3/23/2021 12:30:49 AM
ALKALINITY TO PH 4.5 -SM 2320B-2011	I				Analyst: CP
Alkalinity, Total (As CaCO3)	130	10	mgCaCO3/L	1	3/8/2021 3:00:00 PM
AMMONIA (NON-DISTILLED) - EPA 350.	1 REV 2.0				Analyst: KB
Nitrogen, Ammonia (As N)	ND	0.1	mg/L	1	3/16/2021 3:30:18 PM

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / QuarterlyPO#:20-0099AC

Date: 22-Jun-21

 Client Sample ID:
 8910-D

 Collection Date:
 3/1/2021 1:50:00 PM

 Lab Sample ID:
 210303020-007

 Matrix:
 GROUNDWATER

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
CONDUCTANCE AT 25C - SM 2510	3-2011				Analyst: BG
Specific Conductance	745	1	µmhos/cm	1	3/17/2021
TOTAL DISSOLVED SOLIDS - SM 2				Analyst: JH	
TDS (Residue, Filterable)	725	5	mg/L	1	3/8/2021

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / Quarterly

PO#: 20-0099AC

Date: 22-Jun-21

 Client Sample ID:
 8911-D

 Collection Date:
 3/1/2021 2:20:00 PM

 Lab Sample ID:
 210303020-008

 Matrix:
 GROUNDWATER

Analyses	Result	RL Qual	Units	DF	Date Analyzed
FIELD-PH, RES CL2, AND TEMP ARE	Analyst: FLD				
pH (E150.1) Temperature (E170.1) Turbidity (E180.1)	7.2 10 < 1	1.0	S.U. deg C NTU		3/1/2021 2:20:00 PM 3/1/2021 2:20:00 PM 3/1/2021 2:20:00 PM
ICP METALS - EPA 200.7					Analyst: KH
(Prep: SW3010A - 3/4/2	021)				
Aluminum	ND	100	μg/L	1	3/4/2021 3:00:00 PM
Arsenic	ND	5.00	μg/L	1	3/4/2021 3:00:00 PM
Boron	1050	50.0	μg/L	1	3/4/2021 3:00:00 PM
Cadmium	ND	5.00	μg/L	1	3/4/2021 3:00:00 PM
Calcium	53300	50.0	μg/L	1	3/4/2021 3:00:00 PM
Copper	ND	5.00	μg/L	1	3/4/2021 3:00:00 PM
Iron	ND	50.0	μg/L	1	3/4/2021 3:00:00 PM
Magnesium	17400	50.0	μg/L	1	3/4/2021 3:00:00 PM
Manganese	26.6	20.0	μg/L	1	3/4/2021 3:00:00 PM
Potassium	3070	50.0	μg/L	1	3/4/2021 3:00:00 PM
Selenium	ND	5.00	μg/L	1	3/4/2021 3:00:00 PM
Sodium	99600	5000	μg/L	10	3/4/2021 3:32:00 PM
HARDNESS - EPA 200.7 REV 4.4					Analyst: KH
Total Hardness (As CaCO3)	205	5	mg/L CaCO3	1	3/4/2021
MERCURY - EPA 245.1 REV 3.0 (Prep: E245.1 - 3/3/2	021)				Analyst: AVB
Mercury	ND	0.0002	mg/L	1	3/4/2021 8:50:59 AM
ANIONS BY ION CHROMATOGRAPH	Y - EPA 300.0 F	REV 2.1			Analyst: CC
Chloride	7,69	2.00	ma/L	2	3/23/2021 12:49:51 AM
Sulfate	214	10.0	mg/L	10	3/23/2021 1:08:54 AM
ALKALINITY TO PH 4.5 -SM 2320B-20	011				Analyst: CP
Alkalinity, Total (As CaCO3)	200	10	mgCaCO3/L	1	3/8/2021 3:00:00 PM
AMMONIA (NON-DISTILLED) - EPA 3	50.1 REV 2.0				Analyst: KB
Nitrogen, Ammonia (As N)	ND	0.1	mg/L	1	3/16/2021 3:35:11 PM

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / QuarterlyPO#:20-0099AC

Date: 22-Jun-21

 Client Sample ID:
 8911-D

 Collection Date:
 3/1/2021 2:20:00 PM

 Lab Sample ID:
 210303020-008

 Matrix:
 GROUNDWATER

Analyses	Result	RL Qua	al Units	DF	Date Analyzed	
CONDUCTANCE AT 25C - SM 2510E	3-2011				Analyst: BG	
Specific Conductance	782	1	µmhos/cm	1	3/17/2021	
TOTAL DISSOLVED SOLIDS - SM 25				Analyst: JH		
TDS (Residue, Filterable)	580	5	mg/L	1	3/8/2021	

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / Quarterly

PO#: 20-0099AC

Date: 22-Jun-21

 Client Sample ID:
 8911-SH

 Collection Date:
 3/2/2021 7:30:00 AM

 Lab Sample ID:
 210303020-009

 Matrix:
 GROUNDWATER

Analyses	Result	RL Qual	Units	DF	Date Analyzed			
FIELD-PH, RES CL2, AND TEMP ARE NO	FIELD-PH, RES CL2, AND TEMP ARE NOT ELAP CERTIFIABLE							
pH (E150.1) Temperature (E170.1) Turbidity (E180.1)	7.1 8 < 1	1.0	S.U. deg C NTU		3/2/2021 7:30:00 AM 3/2/2021 7:30:00 AM 3/2/2021 7:30:00 AM			
ICP METALS - EPA 200.7					Analyst: KH			
(Prep: SW3010A - 3/4/2021)							
Aluminum	ND	100	μg/L	1	3/4/2021 3:36:00 PM			
Arsenic	12.6	5.00	μg/L	1	3/4/2021 3:36:00 PM			
Boron	306	50.0	μg/L	1	3/4/2021 3:36:00 PM			
Cadmium	ND	5.00	μg/L	1	3/4/2021 3:36:00 PM			
Calcium	45100	50.0	μg/L	1	3/4/2021 3:36:00 PM			
Copper	ND	5.00	μg/L	1	3/4/2021 3:36:00 PM			
Iron	385	50.0	μg/L	1	3/4/2021 3:36:00 PM			
Magnesium	14500	50.0	μg/L	1	3/4/2021 3:36:00 PM			
Manganese	57.2	20.0	μg/L	1	3/4/2021 3:36:00 PM			
Potassium	1970	50.0	μg/L	1	3/4/2021 3:36:00 PM			
Selenium	ND	5.00	μg/L	1	3/4/2021 3:36:00 PM			
Sodium	58000	5000	μg/L	10	3/4/2021 3:42:00 PM			
HARDNESS - EPA 200.7 REV 4.4					Analyst: KH			
Total Hardness (As CaCO3)	172	5	mg/L CaCO3	1	3/4/2021			
MERCURY - EPA 245.1 REV 3.0 (Prep: E245.1 - 3/3/2021)				Analyst: AVB			
Mercury	ND	0.0002	mg/L	1	3/4/2021 8:52:39 AM			
ANIONS BY ION CHROMATOGRAPHY -	EPA 300.0 F	REV 2.1			Analyst: CC			
Chloride Sulfate	10.7 254	2.00 10.0	mg/L mg/L	2 10	3/24/2021 5:29:14 AM 3/24/2021 5:48:27 AM			
ALKALINITY TO PH 4.5 -SM 2320B-2011					Analyst: CP			
Alkalinity, Total (As CaCO3)	88	4	mgCaCO3/L	1	3/12/2021 11:00:00 AM			
AMMONIA (NON-DISTILLED) - EPA 350.1	I REV 2.0				Analyst: KB			
Nitrogen, Ammonia (As N)	0.2	0.1	mg/L	1	3/16/2021 3:38:26 PM			

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / QuarterlyPO#:20-0099AC

Date: 22-Jun-21

 Client Sample ID:
 8911-SH

 Collection Date:
 3/2/2021 7:30:00 AM

 Lab Sample ID:
 210303020-009

 Matrix:
 GROUNDWATER

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
CONDUCTANCE AT 25C - SM 2510B-	2011				Analyst: BG
Specific Conductance	657	1	µmhos/cm	1	3/17/2021
TOTAL DISSOLVED SOLIDS - SM 254				Analyst: JH	
TDS (Residue, Filterable)	580	5	mg/L	1	3/8/2021

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / Quarterly

PO#: 20-0099AC

Date: 22-Jun-21

 Client Sample ID:
 8942-D

 Collection Date:
 3/2/2021 9:30:00 AM

 Lab Sample ID:
 210303020-010

 Matrix:
 GROUNDWATER

Analyses	Result	RL Qua	Units	DF	Date Analyzed
FIELD-PH, RES CL2, AND TEMP ARE	E NOT ELAP CE	RTIFIABLE			Analyst: FLD
pH (E150.1) Temperature (E170.1) Turbidity (E180.1)	7.2 7 39	1.0	S.U. deg C NTU		3/2/2021 9:30:00 AM 3/2/2021 9:30:00 AM 3/2/2021 9:30:00 AM
ICP METALS - EPA 200.7					Analvst: KH
(Prep: SW3010A - 3/4/2	2021)				,
Aluminum Arsenic Boron Cadmium Calcium Calcium Copper Iron Magnesium Manganese Potassium Selenium Sodium	ND 8.72 315 ND 76200 ND 439 68800 110 3010 ND 39700	100 5.00 50.0 50.0 50.0 50.0 50.0 50.0 5	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1 1 1 1 1 1 1 1 1 1	3/4/2021 3:47:00 PM 3/4/2021 3:47:00 PM
HARDNESS - EPA 200.7 REV 4.4					Analyst: KH
Total Hardness (As CaCO3)	474	5	mg/L CaCO3	1	3/4/2021
MERCURY - EPA 245.1 REV 3.0 (Prep: E245.1 - 3/3/2	2021)				Analyst: AVB
Mercury	ND	0.0002	mg/L	1	3/4/2021 8:54:20 AM
ANIONS BY ION CHROMATOGRAPH	IY - EPA 300.0 F	EV 2.1			Analyst: CC
Chloride Sulfate	4.11 265	2.00 10.0	mg/L mg/L	2 10	3/24/2021 6:07:30 AM 3/24/2021 6:26:32 AM
ALKALINITY TO PH 4.5 -SM 2320B-2	011				Analyst: CP
Alkalinity, Total (As CaCO3)	280	10	mgCaCO3/L	1	3/12/2021 11:00:00 AM
AMMONIA (NON-DISTILLED) - EPA 3	50.1 REV 2.0				Analyst: KB
Nitrogen, Ammonia (As N)	ND	0.1	mg/L	1	3/16/2021 3:40:07 PM

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / QuarterlyPO#:20-0099AC

Date: 22-Jun-21

 Client Sample ID:
 8942-D

 Collection Date:
 3/2/2021 9:30:00 AM

 Lab Sample ID:
 210303020-010

 Matrix:
 GROUNDWATER

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
CONDUCTANCE AT 25C - SM 251	0B-2011				Analyst: BG
Specific Conductance	916	1	µmhos/cm	1	3/17/2021
TOTAL DISSOLVED SOLIDS - SM				Analyst: JH	
TDS (Residue, Filterable)	735	5	mg/L	1	3/8/2021

CLIENT:Lockwood Hills LLCWork Order:210303020DefLockwood Hills LLC

Reference: Lockwood Ash Landfill / Quarterly PO#: 20-0099AC **Date:** 22-Jun-21

 Client Sample ID:
 9306-SH

 Collection Date:
 3/1/2021 4:40:00 PM

 Lab Sample ID:
 210303020-011

 Matrix:
 GROUNDWATER

Analyses	Result	RL Qual	Units	DF	Date Analyzed
FIELD-PH, RES CL2, AND TEMP ARE NO	Analyst: FLD				
pH (E150.1)	7.4		S.U.		3/1/2021 4:40:00 PM
Temperature (E170.1)	6		deg C		3/1/2021 4:40:00 PM
Turbidity (E180.1)	8	1.0	NTU		3/1/2021 4:40:00 PM
ICP METALS - EPA 200.7					Analvst: KH
(Prep: SW3010A - 3/4/2021)				.,
Aluminum	ND	100	µg/L	1	3/4/2021 3:54:00 PM
Arsenic	9.18	5.00	μg/L	1	3/4/2021 3:54:00 PM
Boron	93.0	50.0	μg/L	1	3/4/2021 3:54:00 PM
Cadmium	ND	5.00	μg/L	1	3/4/2021 3:54:00 PM
Calcium	67400	50.0	μg/L	1	3/4/2021 3:54:00 PM
Copper	7.44	5.00	μg/L	1	3/4/2021 3:54:00 PM
Iron	632	50.0	μg/L	1	3/4/2021 3:54:00 PM
Magnesium	60400	50.0	µg/L	1	3/4/2021 3:54:00 PM
Manganese	58.7	20.0	µg/L	1	3/4/2021 3:54:00 PM
Potassium	3220	50.0	µg/L	1	3/4/2021 3:54:00 PM
Selenium	ND	5.00	µg/L	1	3/4/2021 3:54:00 PM
Sodium	20700	500	μg/L	1	3/4/2021 3:54:00 PM
HARDNESS - EPA 200.7 REV 4.4					Analyst: KH
Total Hardness (As CaCO3)	417	5	mg/L CaCO3	1	3/4/2021
MERCURY - EPA 245.1 REV 3.0 (Prep: E245.1 - 3/3/2021)				Analyst: AVB
Mercury	ND	0.0002	mg/L	1	3/4/2021 8:56:02 AM
ANIONS BY ION CHROMATOGRAPHY - E	EPA 300.0 I	REV 2.1			Analyst: CC
Chlorida		2 00	ma/l	2	3/23/2021 1.27.57 AM
Sulfate	עא 70 <i>ו</i>	2.00	mg/L	2	3/23/2021 1.27.57 AM
ounate	75.4	2.00	ilig/ E	-	0/20/2021 1.27.07 / 11
ALKALINITY TO PH 4.5 -SM 2320B-2011					Analyst: CP
Alkalinity, Total (As CaCO3)	330	10	mgCaCO3/L	1	3/12/2021 11:00:00 AM
AMMONIA (NON-DISTILLED) - EPA 350.1	REV 2.0				Analyst: KB
Nitrogen, Ammonia (As N)	ND	0.1	mg/L	1	3/16/2021 3:41:46 PM

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / QuarterlyPO#:20-0099AC

Date: 22-Jun-21

 Client Sample ID:
 9306-SH

 Collection Date:
 3/1/2021 4:40:00 PM

 Lab Sample ID:
 210303020-011

 Matrix:
 GROUNDWATER

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
CONDUCTANCE AT 25C - SM 2510B-2	2011				Analyst: BG
Specific Conductance	711	1	µmhos/cm	1	3/17/2021
TOTAL DISSOLVED SOLIDS - SM 254				Analyst: JH	
TDS (Residue, Filterable)	575	5	mg/L	1	3/8/2021

CLIENT:Lockwood Hills LLCWork Order:210303020DefLockwood Hills LLC

Reference: Lockwood Ash Landfill / Quarterly PO#: 20-0099AC **Date:** 22-Jun-21

 Client Sample ID:
 GW DUP 8909D

 Collection Date:
 3/1/2021 3:50:00 PM

 Lab Sample ID:
 210303020-012

 Matrix:
 GROUNDWATER

Analyses	Result	RL Qual	Units	DF	Date Analyzed
FIELD-PH, RES CL2, AND TEMP ARE	Analyst: FLD				
pH (E150.1)	9.2		S.U.		3/1/2021 3:50:00 PM
Temperature (E170.1) Turbidity (E180.1)	8 > 999	1.0	deg C NTU		3/1/2021 3:50:00 PM 3/1/2021 3:50:00 PM
ICP METALS - EPA 200.7					Analyst: KH
(Prep: SW3010A - 3/4/2	.021)				
Aluminum	1020	100	μg/L	1	3/4/2021 3:58:00 PM
Arsenic	ND	5.00	µg/L	1	3/4/2021 3:58:00 PM
Boron	917	50.0	µg/L	1	3/4/2021 3:58:00 PM
Cadmium	ND	5.00	µg/L	1	3/4/2021 3:58:00 PM
Calcium	12800	50.0	µg/L	1	3/4/2021 3:58:00 PM
Copper	ND	5.00	µg/L	1	3/4/2021 3:58:00 PM
Iron	2980	50.0	µg/L	1	3/4/2021 3:58:00 PM
Magnesium	2680	50.0	µg/L	1	3/4/2021 3:58:00 PM
Manganese	100	20.0	µg/L	1	3/4/2021 3:58:00 PM
Potassium	1390	50.0	μg/L	1	3/4/2021 3:58:00 PM
Selenium	ND	5.00	μg/L	1	3/4/2021 3:58:00 PM
Sodium	167000	5000	μg/L	10	3/4/2021 4:03:00 PM
HARDNESS - EPA 200.7 REV 4.4					Analyst: KH
Total Hardness (As CaCO3)	43	5	mg/L CaCO3	1	3/4/2021
MERCURY - EPA 245.1 REV 3.0 (Prep: E245.1 - 3/3/2					Analyst: AVB
Mercury	ND	0.0002	mg/L	1	3/4/2021 8:57:43 AM
ANIONS BY ION CHROMATOGRAPH	Y - EPA 300.0 R	EV 2.1			Analyst: CC
Chloride	4.30	2.00	mg/L	2	3/23/2021 2:25:03 AM
Sulfate	102	2.00	mg/L	2	3/23/2021 2:25:03 AM
ALKALINITY TO PH 4.5 -SM 2320B-2	011				Analyst: CP
Alkalinity, Total (As CaCO3)	290	10	mgCaCO3/L	1	3/12/2021 11:00:00 AM
AMMONIA (NON-DISTILLED) - EPA 3	50.1 REV 2.0				Analyst: KB
Nitrogen, Ammonia (As N)	0.5	0.1	mg/L	1	3/16/2021 3:43:24 PM

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / QuarterlyPO#:20-0099AC

Date: 22-Jun-21

 Client Sample ID:
 GW DUP 8909D

 Collection Date:
 3/1/2021 3:50:00 PM

 Lab Sample ID:
 210303020-012

 Matrix:
 GROUNDWATER

Analyses	Result	RL Qua	Units	DF	Date Analyzed
CONDUCTANCE AT 25C - SM 251				Analyst: BG	
Specific Conductance	734	1	µmhos/cm	1	3/17/2021
TOTAL DISSOLVED SOLIDS - SM				Analyst: JH	
TDS (Residue, Filterable)	725	5	mg/L	1	3/8/2021

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / QuarterlyPO#:20-0099AC

Date: 22-Jun-21

Client Sample ID: GW Dep Drain 1 Collection Date: 3/1/2021 11:24:00 AM Lab Sample ID: 210303020-013 Matrix: GROUNDWATER

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
FIELD-PH, RES CL2, AND TEMP	Analyst: FLD				
Dissolved Oxygen (E360.1)	6.92	0.10	mg/L		3/1/2021 11:24:00 AM
Flow, GPD	1179		gal/day		3/1/2021 11:24:00 AM
pH (E150.1)	7.3		S.U.		3/1/2021 11:24:00 AM
Temperature (E170.1)	7		deg C		3/1/2021 11:24:00 AM
Turbidity (E180.1)	43	1.0	NTU		3/1/2021 11:24:00 AM
ICP METALS - EPA 200.7					Analyst: KH
(Prep: SW3010A - 3	/4/2021)				
Aluminum	ND	100	μg/L	1	3/4/2021 4:12:00 PM
Arsenic	ND	5.00	μg/L	1	3/4/2021 4:12:00 PM
Boron	2020	50.0	μg/L	1	3/4/2021 4:12:00 PM
Cadmium	ND	5.00	μg/L	1	3/4/2021 4:12:00 PM
Calcium	233000	500	μg/L	10	3/4/2021 4:19:00 PM
Copper	ND	5.00	μg/L	1	3/4/2021 4:12:00 PM
Iron	ND	50.0	μg/L	1	3/4/2021 4:12:00 PM
Magnesium	78000	50.0	μg/L	1	3/4/2021 4:12:00 PM
Manganese	ND	20.0	μg/L	1	3/4/2021 4:12:00 PM
Potassium	4560	50.0	μg/L	1	3/4/2021 4:12:00 PM
Selenium	ND	5.00	μg/L	1	3/4/2021 4:12:00 PM
Sodium	32200	500	μg/L	1	3/4/2021 4:12:00 PM
HARDNESS - EPA 200.7 REV 4.4					Analyst: KH
Total Hardness (As CaCO3)	903	5	mg/L CaCO3	1	3/4/2021
MERCURY - EPA 245.1 REV 3.0 (Prep: E245.1 - 3	/3/2021)				Analyst: AVB
Mercury	ND	0.0002	mg/L	1	3/4/2021 8:59:25 AM
ANIONS BY ION CHROMATOGRA	APHY - EPA 300.0 R	EV 2.1			Analyst: CC
Chloride	47.8	2.00	ma/L	2	3/23/2021 4:02:19 AM
Sulfate	516	20.0	mg/L	20	3/23/2021 4:21:37 AM
ALKALINITY TO PH 4.5 -SM 2320	B-2011				Analyst: CP
Alkalinity, Total (As CaCO3)	310	10	mgCaCO3/L	1	3/12/2021 11:00:00 AM
AMMONIA (NON-DISTILLED) - EP	A 350.1 REV 2.0				Analyst: KB

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / QuarterlyPO#:20-0099AC

Date: 22-Jun-21

 Client Sample ID:
 GW Dep Drain 1

 Collection Date:
 3/1/2021 11:24:00 AM

 Lab Sample ID:
 210303020-013

 Matrix:
 GROUNDWATER

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
AMMONIA (NON-DISTILLED) - EP	A 350.1 REV 2.0				Analyst: KB
Nitrogen, Ammonia (As N) CONDUCTANCE AT 25C - SM 251	ND 0B-2011	0.1	mg/L	1	3/16/2021 3:45:02 PM Analyst: BG
Specific Conductance TOTAL DISSOLVED SOLIDS - SM	1480 2540C-2011	1	µmhos/cm	1	3/17/2021 Analyst: JH
TDS (Residue, Filterable)	1330	5	mg/L	1	3/8/2021

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / Quarterly

PO#: 20-0099AC

Date: 22-Jun-21

Client Sample ID: Leak Detection Syst. Collection Date: 3/1/2021 10:50:00 AM Lab Sample ID: 210303020-014 Matrix: GROUNDWATER

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
FIELD-PH, RES CL2, AND TEMP	ARE NOT ELAP CE	RTIFIABLE			Analyst: FLD
Dissolved Oxygen (E360.1)	5.98	0.10	mg/L		3/1/2021 10:50:00 AM
Flow, GPD	266		gal/day		3/1/2021 10:50:00 AM
pH (E150.1)	7.7		S.U.		3/1/2021 10:50:00 AM
Temperature (E170.1)	9		deg C		3/1/2021 10:50:00 AM
Turbidity (E180.1)	14	1.0	NTU		3/1/2021 10:50:00 AM
ICP METALS - EPA 200.7					Analyst: KH
(Prep: SW3010A - 3	3/4/2021)				
Aluminum	ND	100	μg/L	1	3/4/2021 4:26:00 PM
Arsenic	ND	5.00	μg/L	1	3/4/2021 4:26:00 PM
Boron	1180	50.0	μg/L	1	3/4/2021 4:26:00 PM
Cadmium	ND	5.00	μg/L	1	3/4/2021 4:26:00 PM
Calcium	293000	500	μg/L	10	3/5/2021 10:47:00 AM
Copper	5.99	5.00	μg/L	1	3/4/2021 4:26:00 PM
Iron	ND	50.0	μg/L	1	3/4/2021 4:26:00 PM
Magnesium	77600	50.0	μg/L	1	3/4/2021 4:26:00 PM
Manganese	ND	20.0	μg/L	1	3/4/2021 4:26:00 PM
Potassium	3040	50.0	μg/L	1	3/4/2021 4:26:00 PM
Selenium	18.7	5.00	μg/L	1	3/4/2021 4:26:00 PM
Sodium	26100	500	μg/L	1	3/4/2021 4:26:00 PM
HARDNESS - EPA 200.7 REV 4.4					Analyst: KH
Total Hardness (As CaCO3)	1051	5	mg/L CaCO3	1	3/5/2021
MERCURY - EPA 245.1 REV 3.0 (Prep: E245.1 - 3	3/3/2021)				Analyst: AVB
Mercury	ND	0.0002	mg/L	1	3/4/2021 9:04:28 AM
ANIONS BY ION CHROMATOGRA	APHY - EPA 300.0 R	EV 2.1			Analyst: CC
Chloride	62.7	2.00	ma/L	2	3/23/2021 4:59:41 AM
Sulfate	738	20.0	mg/L	20	3/23/2021 5:18:42 AM
ALKALINITY TO PH 4.5 -SM 2320	B-2011				Analyst: CP
Alkalinity, Total (As CaCO3)	300	10	mgCaCO3/L	1	3/12/2021 11:00:00 AM
AMMONIA (NON-DISTILLED) - EP	A 350.1 REV 2.0				Analyst: KB

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / QuarterlyPO#:20-0099AC

Date: 22-Jun-21

 Client Sample ID:
 Leak Detection Syst.

 Collection Date:
 3/1/2021 10:50:00 AM

 Lab Sample ID:
 210303020-014

 Matrix:
 GROUNDWATER

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
AMMONIA (NON-DISTILLED) - EP	A 350.1 REV 2.0				Analyst: KB
Nitrogen, Ammonia (As N)	ND	0.1	mg/L	1	3/16/2021 3:46:40 PM
CONDUCTANCE AT 25C - SM 251	0B-2011				Analyst: BG
Specific Conductance	1770	1	µmhos/cm	1	3/17/2021
TOTAL DISSOLVED SOLIDS - SM	2540C-2011				Analyst: JH
TDS (Residue, Filterable)	1630	5	mg/L	1	3/8/2021

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / QuarterlyPO#:20-0099AC

Date: 22-Jun-21

Client Sample ID: Under Drain 1 Collection Date: 3/1/2021 1:12:00 PM Lab Sample ID: 210303020-015 Matrix: GROUNDWATER

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
FIELD-PH, RES CL2, AND TEMP ARE N	NOT ELAP CE	RTIFIABLE			Analyst: FLD
Dissolved Oxygen (E360.1)	6.3	0.10	mg/L		3/1/2021 1:12:00 PM
Flow, GPD	4565		gal/day		3/1/2021 1:12:00 PM
pH (E150.1)	8.1		S.U.		3/1/2021 1:12:00 PM
Temperature (E170.1)	9		deg C		3/1/2021 1:12:00 PM
Turbidity (E180.1)	132	1.0	NTU		3/1/2021 1:12:00 PM
ICP METALS - EPA 200.7					Analyst: KH
(Prep: SW3010A - 3/4/202	21)				
Aluminum	ND	100	μg/L	1	3/5/2021 10:51:00 AM
Arsenic	19.9	5.00	μg/L	1	3/5/2021 10:51:00 AM
Boron	3850	50.0	μg/L	1	3/5/2021 10:51:00 AM
Cadmium	ND	5.00	μg/L	1	3/5/2021 10:51:00 AM
Calcium	332000	500	μg/L	10	3/5/2021 10:58:00 AM
Copper	ND	5.00	μg/L	1	3/5/2021 10:51:00 AM
Iron	1790	50.0	μg/L	1	3/5/2021 10:51:00 AM
Magnesium	79400	50.0	μg/L	1	3/5/2021 10:51:00 AM
Manganese	547	20.0	μg/L	1	3/5/2021 10:51:00 AM
Potassium	16900	50.0	μg/L	1	3/5/2021 10:51:00 AM
Selenium	12.1	5.00	μg/L	1	3/5/2021 10:51:00 AM
Sodium	42500	500	μg/L	1	3/5/2021 10:51:00 AM
LOW LEVEL MERCURY - EPA 1631E					Analyst: WB
(Prep: 1631E - 3/3/202	21)				
Mercury	2.2	0.5	ng/L	1	3/4/2021
HARDNESS - EPA 200.7 REV 4.4					Analyst: KH
Total Hardness (As CaCO3)	1156	5	mg/L CaCO3	1	3/5/2021
MERCURY - EPA 245.1 REV 3.0 (Prep: E245.1 - 3/3/202	21)				Analyst: AVB
Mercury	ND	0.0002	mg/L	1	3/4/2021 9:09:30 AM
ANIONS BY ION CHROMATOGRAPHY	- EPA 300.0 R	EV 2.1			Analyst: CC
Chloride	24.1	2.00	mg/L	2	3/23/2021 5:37:44 AM
Sulfate	460	10.0	mg/L	10	3/23/2021 6:15:49 AM
ALKALINITY TO PH 4.5 -SM 2320B-201	1				Analyst: CP

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / QuarterlyPO#:20-0099AC

Date: 22-Jun-21

Client Sample ID:Under Drain 1Collection Date:3/1/2021 1:12:00 PMLab Sample ID:210303020-015Matrix:GROUNDWATER

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
ALKALINITY TO PH 4.5 -SM 2320B-	2011				Analyst: CP
Alkalinity, Total (As CaCO3)	520	10	mgCaCO3/L	1	3/12/2021 11:00:00 AM
AMMONIA (NON-DISTILLED) - EPA	350.1 REV 2.0				Analyst: KB
Nitrogen, Ammonia (As N)	ND	0.1	mg/L	1	3/16/2021 3:48:18 PM
CONDUCTANCE AT 25C - SM 2510	3-2011				Analyst: BG
Specific Conductance	1640	1	µmhos/cm	1	3/17/2021
TOTAL DISSOLVED SOLIDS - SM 2				Analyst: JH	
TDS (Residue, Filterable)	1430	5	mg/L	1	3/8/2021

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / QuarterlyPO#:20-0099AC

Date: 22-Jun-21

Client Sample ID: Under Drain 2 Collection Date: 3/1/2021 11:05:00 AM Lab Sample ID: 210303020-016 Matrix: GROUNDWATER

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
FIELD-PH, RES CL2, AND TEMP	Analyst: FLD				
Dissolved Oxygen (E360.1)	8.75	0.10	mg/L		3/1/2021 11:05:00 AM
Flow, GPD	4565		gal/day		3/1/2021 11:05:00 AM
pH (E150.1)	7.6		S.U.		3/1/2021 11:05:00 AM
Temperature (E170.1)	10		deg C		3/1/2021 11:05:00 AM
Turbidity (E180.1)	128	1.0	NTU		3/1/2021 11:05:00 AM
ICP METALS - EPA 200.7					Analyst: KH
(Prep: SW3010A - 3	/4/2021)				
Aluminum	ND	100	μg/L	1	3/5/2021 11:09:00 AM
Arsenic	11.6	5.00	μg/L	1	3/5/2021 11:09:00 AM
Boron	44100	500	μg/L	10	3/5/2021 11:13:00 AM
Cadmium	ND	5.00	μg/L	1	3/5/2021 11:09:00 AM
Calcium	709000	500	μg/L	10	3/5/2021 11:13:00 AM
Copper	ND	5.00	μg/L	1	3/5/2021 11:09:00 AM
Iron	2340	50.0	μg/L	1	3/5/2021 11:09:00 AM
Magnesium	89400	50.0	μg/L	1	3/5/2021 11:09:00 AM
Manganese	1080	20.0	μg/L	1	3/5/2021 11:09:00 AM
Potassium	107000	500	μg/L	10	3/5/2021 11:13:00 AM
Selenium	10.9	5.00	μg/L	1	3/5/2021 11:09:00 AM
Sodium	226000	5000	μg/L	10	3/5/2021 11:13:00 AM
HARDNESS - EPA 200.7 REV 4.4					Analyst: KH
Total Hardness (As CaCO3)	2139	5	mg/L CaCO3	1	3/5/2021
MERCURY - EPA 245.1 REV 3.0 (Prep: E245.1 - 3	/3/2021)				Analyst: AVB
Mercury	ND	0.0002	mg/L	1	3/4/2021 9:11:10 AM
ANIONS BY ION CHROMATOGRA	NPHY - EPA 300.0 R	REV 2.1			Analyst: CC
Chloride	490	10.0	ma/L	10	3/23/2021 6:34:50 AM
Sulfate	1500	50.0	mg/L	50	3/23/2021 6:53:52 AM
ALKALINITY TO PH 4.5 -SM 2320	B-2011				Analyst: CP
Alkalinity, Total (As CaCO3)	270	10	mgCaCO3/L	1	3/12/2021 11:00:00 AM
AMMONIA (NON-DISTILLED) - EP	A 350.1 REV 2.0				Analyst: KB

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / QuarterlyPO#:20-0099AC

Date: 22-Jun-21

 Client Sample ID:
 Under Drain 2

 Collection Date:
 3/1/2021 11:05:00 AM

 Lab Sample ID:
 210303020-016

 Matrix:
 GROUNDWATER

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
AMMONIA (NON-DISTILLED) - EP	A 350.1 REV 2.0				Analyst: KB
Nitrogen, Ammonia (As N) CONDUCTANCE AT 25C - SM 251	1.5 0B-2011	0.1	mg/L	1	3/16/2021 3:49:59 PM Analyst: BG
Specific Conductance TOTAL DISSOLVED SOLIDS - SM	3970 2540C-2011	1	µmhos/cm	1	3/17/2021 Analyst: JH
TDS (Residue, Filterable)	3530	5	mg/L	1	3/8/2021

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / QuarterlyPO#:20-0099AC

Date: 22-Jun-21

Client Sample ID: Under Drain 3 Collection Date: 3/1/2021 10:17:00 AM Lab Sample ID: 210303020-017 Matrix: GROUNDWATER

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
FIELD-PH, RES CL2, AND TEMP	Analyst: FLD					
Dissolved Oxygen (E360.1)	6.88	0.10		mg/L		3/1/2021 10:17:00 AM
Flow, GPD	1408			gal/day		3/1/2021 10:17:00 AM
pH (E150.1)	7.0			S.U.		3/1/2021 10:17:00 AM
Temperature (E170.1)	10			deg C		3/1/2021 10:17:00 AM
Turbidity (E180.1)	27	1.0		NTU		3/1/2021 10:17:00 AM
ICP METALS - EPA 200.7						Analyst: KH
(Prep: SW3010A - 3	8/4/2021)					
Aluminum	ND	100		μg/L	1	3/5/2021 11:16:00 AM
Arsenic	7.67	5.00		µg/L	1	3/5/2021 11:16:00 AM
Boron	47200	500		μg/L	10	3/5/2021 11:21:00 AM
Cadmium	ND	5.00		μg/L	1	3/5/2021 11:16:00 AM
Calcium	1060000	500		μg/L	10	3/5/2021 11:21:00 AM
Copper	ND	5.00		μg/L	1	3/5/2021 11:16:00 AM
Iron	ND	50.0		μg/L	1	3/5/2021 11:16:00 AM
Magnesium	126000	50.0		µg/L	1	3/5/2021 11:16:00 AM
Manganese	431	20.0		μg/L	1	3/5/2021 11:16:00 AM
Potassium	190000	500		μg/L	10	3/5/2021 11:21:00 AM
Selenium	14.7	5.00		μg/L	1	3/5/2021 11:16:00 AM
Sodium	365000	5000		μg/L	10	3/5/2021 11:21:00 AM
HARDNESS - EPA 200.7 REV 4.4						Analyst: KH
Total Hardness (As CaCO3)	3167	5		mg/L CaCO3	1	3/5/2021
MERCURY - EPA 245.1 REV 3.0 (Prep: E245.1 - 3	3/3/2021)					Analyst: AVB
Mercury	ND	0.0002		mg/L	1	3/4/2021 9:12:51 AM
ANIONS BY ION CHROMATOGRA	APHY - EPA 300.0 R	REV 2.1				Analyst: CC
Chloride	520	10.0		ma/L	10	3/23/2021 8:32:18 AM
Sulfate	1660	50.0		mg/L	50	3/23/2021 8:51:31 AM
ALKALINITY TO PH 4.5 -SM 2320	B-2011					Analyst: CP
Alkalinity, Total (As CaCO3)	330	10		mgCaCO3/L	1	3/15/2021 10:00:00 AM
AMMONIA (NON-DISTILLED) - EF	PA 350.1 REV 2.0					Analyst: KB

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / QuarterlyPO#:20-0099AC

Date: 22-Jun-21

 Client Sample ID:
 Under Drain 3

 Collection Date:
 3/1/2021 10:17:00 AM

 Lab Sample ID:
 210303020-017

 Matrix:
 GROUNDWATER

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
AMMONIA (NON-DISTILLED) - EF				Analyst: KB	
Nitrogen, Ammonia (As N)	0.2	0.1	mg/L	1	3/18/2021 11:22:23 AM
CONDUCTANCE AT 25C - SM 25	I0B-2011				Analyst: BG
Specific Conductance	4390	1	µmhos/cm	1	3/17/2021
TOTAL DISSOLVED SOLIDS - SM	I 2540C-2011				Analyst: JH
TDS (Residue, Filterable)	3920	5	mg/L	1	3/8/2021

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / QuarterlyPO#:20-0099AC

Date: 22-Jun-21

Client Sample ID: Inlet To Pond Collection Date: 3/1/2021 1:27:00 PM Lab Sample ID: 210303020-018 Matrix: GROUNDWATER

Analyses	Result	RL Qu	ual Units	DF	Date Analyzed
FIELD-PH, RES CL2, AND TEMP AR	Analyst: FLD				
Dissolved Oxygen (E360.1)	7.21	0.10	mg/L		3/1/2021 1:27:00 PM
Flow, GPD	11,413		gal/day		3/1/2021 1:27:00 PM
pH (E150.1)	8.0		S.U.		3/1/2021 1:27:00 PM
Temperature (E170.1)	8		deg C		3/1/2021 1:27:00 PM
Turbidity (E180.1)	44	1.0	NTU		3/1/2021 1:27:00 PM
ICP METALS - EPA 200.7					Analyst: KH
(Prep: SW3010A - 3/4/2	2021)				
Aluminum	ND	100	μg/L	1	3/5/2021 11:45:00 AM
Arsenic	18.2	5.00	μg/L	1	3/5/2021 11:45:00 AM
Boron	23700	500	μg/L	10	3/5/2021 11:54:00 AM
Cadmium	ND	5.00	μg/L	1	3/5/2021 11:45:00 AM
Calcium	602000	500	μg/L	10	3/5/2021 11:54:00 AM
Copper	ND	5.00	μg/L	1	3/5/2021 11:45:00 AM
Iron	1000	50.0	μg/L	1	3/5/2021 11:45:00 AM
Magnesium	87700	50.0	μg/L	1	3/5/2021 11:45:00 AM
Manganese	399	20.0	μg/L	1	3/5/2021 11:45:00 AM
Potassium	102000	500	μg/L	10	3/5/2021 11:54:00 AM
Selenium	47.2	5.00	μg/L	1	3/5/2021 11:45:00 AM
Sodium	231000	5000	μg/L	10	3/5/2021 11:54:00 AM
LOW LEVEL MERCURY - EPA 1631E					Analyst: WB
(Prep: 1631E - 3/3/2	2021)				
Mercury	2.4	0.5	ng/L	1	3/4/2021
HARDNESS - EPA 200.7 REV 4.4					Analyst: KH
Total Hardness (As CaCO3)	1864	5	mg/L CaCO3	1	3/5/2021
MERCURY - EPA 245.1 REV 3.0 (Prep: E245.1 - 3/3/2	2021)				Analyst: AVB
Mercury	ND	0.0002	mg/L	1	3/4/2021 9:14:31 AM
ANIONS BY ION CHROMATOGRAPH	IY - EPA 300.0 R	EV 2.1			Analyst: CC
Chloride	294	20.0	mg/L	20	3/23/2021 7:12:39 PM
Sulfate	1290	20.0	mg/L	20	3/23/2021 7:12:39 PM
ALKALINITY TO PH 4.5 -SM 2320B-2	2011				Analyst: CP

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / QuarterlyPO#:20-0099AC

Date: 22-Jun-21

Client Sample ID:Inlet To PondCollection Date:3/1/2021 1:27:00 PMLab Sample ID:210303020-018Matrix:GROUNDWATER

Analyses	Result	RL Qua	d Units	DF	Date Analyzed
ALKALINITY TO PH 4.5 -SM 2320B	-2011				Analyst: CP
Alkalinity, Total (As CaCO3)	330	10	mgCaCO3/L	1	3/15/2021 10:00:00 AM
AMMONIA (NON-DISTILLED) - EPA	350.1 REV 2.0				Analyst: KB
Nitrogen, Ammonia (As N)	0.3	0.1	mg/L	1	3/18/2021 11:24:04 AM
CONDUCTANCE AT 25C - SM 2510)B-2011				Analyst: BG
Specific Conductance	3080	1	µmhos/cm	1	3/17/2021
TOTAL DISSOLVED SOLIDS - SM 2	2540C-2011				Analyst: JH
TDS (Residue, Filterable)	2680	5	mg/L	1	3/8/2021

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / Quarterly

PO#: 20-0099AC

Date: 22-Jun-21

Client Sample ID: Keuka Upstream Collection Date: 3/1/2021 2:15:00 PM Lab Sample ID: 210303020-019 Matrix: GROUNDWATER

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
FIELD-PH, RES CL2, AND TEMP AR	E NOT ELAP CE	RTIFIABLE			Analyst: FLD
Dissolved Oxygen (E360.1)	8.02	0.10	mg/L		3/1/2021 2:15:00 PM
pH (E150.1)	8.3		S.U.		3/1/2021 2:15:00 PM
Temperature (E170.1)	2		deg C		3/1/2021 2:15:00 PM
Turbidity (E180.1)	743	1.0	NTU		3/1/2021 2:15:00 PM
ICP METALS - EPA 200.7					Analyst: KH
(Prep: SW3010A - 3/4/	2021)				
Aluminum	351	100	μg/L	1	3/5/2021 11:58:00 AM
Arsenic	8.15	5.00	μg/L	1	3/5/2021 11:58:00 AM
Boron	ND	50.0	μg/L	1	3/5/2021 11:58:00 AM
Cadmium	ND	5.00	μg/L	1	3/5/2021 11:58:00 AM
Calcium	71300	50.0	μg/L	1	3/5/2021 11:58:00 AM
Copper	ND	5.00	μg/L	1	3/5/2021 11:58:00 AM
Iron	591	50.0	μg/L	1	3/5/2021 11:58:00 AM
Magnesium	16700	50.0	μg/L	1	3/5/2021 11:58:00 AM
Manganese	32.1	20.0	μg/L	1	3/5/2021 11:58:00 AM
Potassium	5670	50.0	μg/L	1	3/5/2021 11:58:00 AM
Selenium	ND	5.00	μg/L	1	3/5/2021 11:58:00 AM
Sodium	29600	500	μg/L	1	3/5/2021 11:58:00 AM
HARDNESS - EPA 200.7 REV 4.4					Analyst: KH
Total Hardness (As CaCO3)	247	5	mg/L CaCO3	1	3/5/2021
MERCURY - EPA 245.1 REV 3.0 (Prep: E245.1 - 3/3/	2021)				Analyst: AVB
Mercury	ND	0.0002	mg/L	1	3/4/2021 9:16:12 AM
ANIONS BY ION CHROMATOGRAPH	HY - EPA 300.0 R	EV 2.1			Analyst: CC
Chloride	66 1	2 00	ma/l	2	3/23/2021 7.31.42 PM
Sulfate	37.9	2.00	mg/L	2	3/23/2021 7:31:42 PM
	0.11		3		Analyst: CD
ALKALINIT TO PH 4.5 -5M 25200-2	2011				Analyst. CF
Alkalinity, Total (As CaCO3)	120	10	mgCaCO3/L	1	3/15/2021 10:00:00 AM
AMMONIA (NON-DISTILLED) - EPA	350.1 REV 2.0				Analyst: KB
Nitrogen, Ammonia (As N)	ND	0.1	mg/L	1	3/18/2021 11:25:43 AM

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / QuarterlyPO#:20-0099AC

Date: 22-Jun-21

 Client Sample ID:
 Keuka Upstream

 Collection Date:
 3/1/2021 2:15:00 PM

 Lab Sample ID:
 210303020-019

 Matrix:
 GROUNDWATER

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
CONDUCTANCE AT 25C - SM 2510	3-2011				Analyst: BG
Specific Conductance	571	1	µmhos/cm	1	3/17/2021
TOTAL DISSOLVED SOLIDS - SM 2				Analyst: JH	
TDS (Residue, Filterable)	495	5	mg/L	1	3/8/2021

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / Quarterly

PO#: 20-0099AC

Date: 22-Jun-21

Client Sample ID:Keuka DownstreamCollection Date:3/1/2021 1:48:00 PMLab Sample ID:210303020-020Matrix:SURFACE WATER

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
FIELD-PH, RES CL2, AND TEMP ARE N	IOT ELAP CE	RTIFIABLE			Analyst: FLD
Dissolved Oxygen (E360.1) pH (E150.1) Temperature (E170.1)	7.3 8.3 2	0.10	mg/L S.U. deg C		3/1/2021 1:48:00 PM 3/1/2021 1:48:00 PM 3/1/2021 1:48:00 PM
	852	1.0	NTU		3/1/2021 1:48:00 PM
(Prep: SW3010A - 3/4/202	21)				Analyst. KII
Aluminum Arsenic Boron Cadmium Calcium Copper Iron Magnesium Manganese Potassium Selenium Sodium	273 9.26 ND ND 73000 ND 600 16800 40.4 5590 ND 28200	100 5.00 50.0 50.0 50.0 50.0 50.0 50.0 5	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1 1 1 1 1 1 1 1 1 1	3/5/2021 12:03:00 PM 3/5/2021 12:03:00 PM
Total Hardness (As CaCO3)	251	5	mg/L CaCO3	1	3/5/2021
MERCURY - EPA 245.1 REV 3.0 (Prep: E245.1 - 3/3/202	201	Ū	g/ _ 04000		Analyst: AVB
Mercury	ND	0.0002	mg/L	1	3/4/2021 9:17:53 AM
ANIONS BY ION CHROMATOGRAPHY	- EPA 300.0 R	EV 2.1			Analyst: CC
Chloride Sulfate	64.7 37.7	2.00 2.00	mg/L mg/L	2 2	3/23/2021 11:40:59 PM 3/23/2021 11:40:59 PM
ALKALINITY TO PH 4.5 -SM 2320B-201	1				Analyst: CP
Alkalinity, Total (As CaCO3)	120	10	mgCaCO3/L	1	3/15/2021 10:00:00 AM
AMMONIA (NON-DISTILLED) - EPA 350	.1 REV 2.0				Analyst: KB
Nitrogen, Ammonia (As N)	ND	0.1	mg/L	1	3/18/2021 11:27:21 AM

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / QuarterlyPO#:20-0099AC

Date: 22-Jun-21

Client Sample ID:Keuka DownstreamCollection Date:3/1/2021 1:48:00 PMLab Sample ID:210303020-020Matrix:SURFACE WATER

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
CONDUCTANCE AT 25C - SM 251	0B-2011				Analyst: BG
Specific Conductance	569	1	µmhos/cm	1	3/17/2021
TOTAL DISSOLVED SOLIDS - SM	2540C-2011				Analyst: JH
TDS (Residue, Filterable)	470	5	mg/L	1	3/8/2021

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / Quarterly

PO#: 20-0099AC

Date: 22-Jun-21

Client Sample ID:Surface Water DupCollection Date:3/1/2021 2:15:00 PMLab Sample ID:210303020-021Matrix:SURFACE WATER

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
FIELD-PH, RES CL2, AND TEMP AR	E NOT ELAP CEI	RTIFIABLE			Analyst: FLD
Dissolved Oxygen (E360.1) pH (E150.1) Temperature (E170.1) Turbidity (E180.1)	8.02 8.3 2 743	0.10	mg/L S.U. deg C NTU		3/1/2021 2:15:00 PM 3/1/2021 2:15:00 PM 3/1/2021 2:15:00 PM 3/1/2021 2:15:00 PM
ICP METALS - EPA 200.7	745	1.0	NIO		Analyst: KH
(Prep: SW3010A - 3/4/	2021)				
Aluminum Arsenic Boron Cadmium Calcium Copper Iron Magnesium Manganese Potassium Selenium Sodium	282 7.87 ND ND 72300 ND 604 16500 30.7 5520 ND 28900	100 5.00 50.0 50.0 50.0 50.0 50.0 50.0 5	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1 1 1 1 1 1 1 1 1 1	3/5/2021 12:07:00 PM 3/5/2021 12:07:00 PM
Total Hardness (As CaCO3)	248	5	mo/L CaCO3	1	3/5/2021
MERCURY - EPA 245.1 REV 3.0 (Prep: E245.1 - 3/3/	2021)	Ŭ	ing, 2 out of t	·	Analyst: AVB
Mercury	ND	0.0002	mg/L	1	3/4/2021 9:19:34 AM
ANIONS BY ION CHROMATOGRAPH	IY - EPA 300.0 R	EV 2.1			Analyst: CC
Chloride Sulfate	66.4 38.0	2.00 2.00	mg/L mg/L	2 2	3/24/2021 12:59:13 AM 3/24/2021 12:59:13 AM
ALKALINITY TO PH 4.5 -SM 2320B-2	2011				Analyst: CP
Alkalinity, Total (As CaCO3)	130	10	mgCaCO3/L	1	3/15/2021 10:00:00 AM
AMMONIA (NON-DISTILLED) - EPA 3	350.1 REV 2.0				Analyst: KB
Nitrogen, Ammonia (As N)	ND	0.1	mg/L	1	3/18/2021 11:28:59 AM

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / QuarterlyPO#:20-0099AC

Date: 22-Jun-21

Client Sample ID:Surface Water DupCollection Date:3/1/2021 2:15:00 PMLab Sample ID:210303020-021Matrix:SURFACE WATER

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
CONDUCTANCE AT 25C - SM 2510	B-2011				Analyst: BG
Specific Conductance	567	1	µmhos/cm	1	3/17/2021
TOTAL DISSOLVED SOLIDS - SM 2				Analyst: JH	
TDS (Residue, Filterable)	530	5	mg/L	1	3/8/2021

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / Quarterly

PO#: 20-0099AC

Date: 22-Jun-21

Client Sample ID:Pond GrabCollection Date:3/1/2021 2:28:00 PMLab Sample ID:210303020-022Matrix:SURFACE WATER

Analyses	Result	RL Q	Qual Units	DF	Date Analyzed
FIELD-PH, RES CL2, AND TEMP ARE NO	T ELAP CE	RTIFIABLE			Analyst: FLD
Dissolved Oxygen (E360.1) pH (E150.1)	4.72 8.2	0.10	mg/L S.U.		3/1/2021 2:28:00 PM 3/1/2021 2:28:00 PM
Temperature (E170.1) Turbidity (E180.1)	1 101	1.0	deg C NTU		3/1/2021 2:28:00 PM 3/1/2021 2:28:00 PM
ICP METALS - EPA 200.7	,				Analyst: KH
(Prep: SW3010A - 3/4/2021)				
Aluminum	ND	100	μg/L	1	3/5/2021 12:12:00 PM
Arsenic	10.6	5.00	μg/L	1	3/5/2021 12:12:00 PM
Boron	3660	50.0	μg/L	1	3/5/2021 12:12:00 PM
Cadmium	ND	5.00	μg/L	1	3/5/2021 12:12:00 PM
Calcium	86000	50.0	μg/L	1	3/5/2021 12:12:00 PM
Copper	ND	5.00	μg/L	1	3/5/2021 12:12:00 PM
Iron	150	50.0	μg/L	1	3/5/2021 12:12:00 PM
Magnesium	15100	50.0	μg/L	1	3/5/2021 12:12:00 PM
Manganese	34.7	20.0	μg/L	1	3/5/2021 12:12:00 PM
Potassium	15600	50.0	μg/L	1	3/5/2021 12:12:00 PM
Selenium	ND	5.00	μg/L	1	3/5/2021 12:12:00 PM
Sodium	36300	500	μg/L	1	3/5/2021 12:12:00 PM
HARDNESS - EPA 200.7 REV 4.4					Analyst: KH
Total Hardness (As CaCO3)	277	5	mg/L CaCO3	1	3/5/2021
MERCURY - EPA 245.1 REV 3.0 (Prep: E245.1 - 3/3/2021)				Analyst: AVB
Mercury	ND	0.0002	mg/L	1	3/4/2021 9:21:16 AM
ANIONS BY ION CHROMATOGRAPHY - E	EPA 300.0 F	REV 2.1			Analyst: CC
Chloride Sulfate	47.2 239	10.0 10.0	mg/L mg/L	10 10	3/24/2021 1:18:32 AM 3/24/2021 1:18:32 AM
ALKALINITY TO PH 4.5 -SM 2320B-2011					Analyst: CP
Alkalinity, Total (As CaCO3)	44	4	mgCaCO3/L	1	3/15/2021 10:00:00 AM
AMMONIA (NON-DISTILLED) - EPA 350.1	REV 2.0				Analyst: KB
Nitrogen, Ammonia (As N)	ND	0.1	mg/L	1	3/18/2021 11:30:40 AM

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / QuarterlyPO#:20-0099AC

Date: 22-Jun-21

Client Sample ID:Pond GrabCollection Date:3/1/2021 2:28:00 PMLab Sample ID:210303020-022Matrix:SURFACE WATER

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
CONDUCTANCE AT 25C - SM 25	10B-2011				Analyst: BG
Specific Conductance	717	1	µmhos/cm	1	3/17/2021
TOTAL DISSOLVED SOLIDS - SM				Analyst: JH	
TDS (Residue, Filterable)	560	5	mg/L	1	3/8/2021

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / Quarterly

PO#: 20-0099AC

Date: 22-Jun-21

Client Sample ID: Field Blank Collection Date: 3/1/2021 1:20:00 PM Lab Sample ID: 210303020-023 Matrix: GROUNDWATER

Analyses	Result	RL Qual	Units	DF	Date Analyzed
FIELD-PH, RES CL2, AND TEMP ARE NO	T ELAP CE	RTIFIABLE			Analyst: FLD
Dissolved Oxygen (E360.1)	2.41	0.10	mg/L		3/1/2021 1:20:00 PM
pH (E150.1)	7.1		S.U.		3/1/2021 1:20:00 PM
Temperature (E170.1)	2		deg C		3/1/2021 1:20:00 PM
Turbidity (E180.1)	< 1	1.0	NTU		3/1/2021 1:20:00 PM
ICP METALS - EPA 200.7					Analyst: KH
(Prep: SW3010A - 3/4/2021)				
Aluminum	ND	100	μg/L	1	3/5/2021 12:16:00 PM
Arsenic	ND	5.00	μg/L	1	3/5/2021 12:16:00 PM
Boron	ND	50.0	μg/L	1	3/5/2021 12:16:00 PM
Cadmium	ND	5.00	μg/L	1	3/5/2021 12:16:00 PM
Calcium	59.8	50.0	μg/L	1	3/5/2021 12:16:00 PM
Copper	ND	5.00	μg/L	1	3/5/2021 12:16:00 PM
Iron	ND	50.0	μg/L	1	3/5/2021 12:16:00 PM
Magnesium	ND	50.0	μg/L	1	3/5/2021 12:16:00 PM
Manganese	ND	20.0	μg/L	1	3/5/2021 12:16:00 PM
Potassium	ND	50.0	μg/L	1	3/5/2021 12:16:00 PM
Selenium	ND	5.00	μg/L	1	3/5/2021 12:16:00 PM
Sodium	ND	500	μg/L	1	3/5/2021 12:16:00 PM
HARDNESS - EPA 200.7 REV 4.4					Analyst: KH
Total Hardness (As CaCO3)	ND	5	mg/L CaCO3	1	3/5/2021
MERCURY - EPA 245.1 REV 3.0 (Prep: E245.1 - 3/3/2021)				Analyst: AVB
Mercury	ND	0.0002	mg/L	1	3/4/2021 9:22:58 AM
ANIONS BY ION CHROMATOGRAPHY - E	PA 300.0 F	REV 2.1			Analyst: CC
Chloride	ND	2.00	mg/L	2	3/24/2021 1:37:34 AM
Sulfate	ND	2.00	mg/L	2	3/24/2021 1:37:34 AM
ALKALINITY TO PH 4.5 -SM 2320B-2011					Analyst: CP
Alkalinity, Total (As CaCO3)	4	1	mgCaCO3/L	1	3/15/2021 10:00:00 AM
AMMONIA (NON-DISTILLED) - EPA 350.1	REV 2.0				Analyst: KB
Nitrogen, Ammonia (As N)	ND	0.1	mg/L	1	3/18/2021 12:10:03 PM

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / QuarterlyPO#:20-0099AC

Date: 22-Jun-21

 Client Sample ID:
 Field Blank

 Collection Date:
 3/1/2021 1:20:00 PM

 Lab Sample ID:
 210303020-023

 Matrix:
 GROUNDWATER

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
CONDUCTANCE AT 25C - SM 2510E	-2011				Analyst: BG
Specific Conductance	1	1	µmhos/cm	1	3/17/2021
TOTAL DISSOLVED SOLIDS - SM 25	40C-2011				Analyst: JH
TDS (Residue, Filterable)	160	5	mg/L	1	3/8/2021

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / QuarterlyPO#:20-0099AC

Date: 22-Jun-21

Client Sample ID:LLHg Field BlankCollection Date:3/1/2021 1:15:00 PMLab Sample ID:210303020-024Matrix:GROUNDWATER

Analyses	Result	RL Qual	Units	DF	Date Analyzed
LOW LEVEL MERCURY - EPA 1631E (Prep: 1631E - 3/3/2021)				Analyst: WB
Mercury	2.0	0.5	ng/L	1	3/4/2021
CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / Quarterly

PO#: 20-0099AC

Date: 22-Jun-21

 Client Sample ID:
 8401

 Collection Date:
 3/1/2021 4:20:00 PM

 Lab Sample ID:
 210303020-025

 Matrix:
 GROUNDWATER

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
FIELD-PH, RES CL2, AND TEMP ARE NO	OT ELAP CE	RTIFIABLE				Analyst: FLD
pH (E150.1) Temperature (E170.1) Turbidity (E180.1)	7.2 5 3	1.0		S.U. deg C NTU		3/1/2021 4:20:00 PM 3/1/2021 4:20:00 PM 3/1/2021 4:20:00 PM
ICP METALS - EPA 200.7						Analvst: KH
(Prep: SW3010A - 3/4/2021)					,
Aluminum Arsenic Boron Cadmium Calcium Copper Iron Magnesium Manganese Potassium Selenium Sodium	ND 8.56 829 ND 94400 ND 256 26000 71.6 2630 ND 90300	$ \begin{array}{r} 100 \\ 5.00 \\ 50.0 \\ 5.00 \\ 5.00 \\ 50.0 \\ 50.0 \\ 20.0 \\ 50.0 \\ 50.0 \\ 5000 \\ \end{array} $		μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1 1 1 1 1 1 1 1 1 1 1 1 1	3/5/2021 12:21:00 PM 3/5/2021 12:21:00 PM
HARDNESS - EPA 200.7 REV 4.4						Analyst: KH
Total Hardness (As CaCO3)	343	5		mg/L CaCO3	1	3/5/2021
MERCURY - EPA 245.1 REV 3.0 (Prep: E245.1 - 3/3/2021)					Analyst: AVB
Mercury	ND	0.0002		mg/L	1	3/4/2021 9:24:40 AM
ANIONS BY ION CHROMATOGRAPHY -	EPA 300.0 F	REV 2.1				Analyst: CC
Chloride Sulfate	66.2 99.5	2.00 2.00	N N	mg/L mg/L	2 2	3/24/2021 1:56:36 AM 3/24/2021 1:56:36 AM
ALKALINITY TO PH 4.5 -SM 2320B-2011						Analyst: CP
Alkalinity, Total (As CaCO3)	340	10		mgCaCO3/L	1	3/15/2021 10:00:00 AM
AMMONIA (NON-DISTILLED) - EPA 350.1	REV 2.0					Analyst: KB
Nitrogen, Ammonia (As N)	1.0	0.1		mg/L	1	3/18/2021 12:14:57 PM

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / QuarterlyPO#:20-0099AC

Date: 22-Jun-21

 Client Sample ID:
 8401

 Collection Date:
 3/1/2021 4:20:00 PM

 Lab Sample ID:
 210303020-025

 Matrix:
 GROUNDWATER

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
CONDUCTANCE AT 25C - SM 2510E	3-2011				Analyst: BG
Specific Conductance	955	1	µmhos/cm	1	3/17/2021
TOTAL DISSOLVED SOLIDS - SM 2	540C-2011				Analyst: JH
TDS (Residue, Filterable)	595	5	mg/L	1	3/8/2021

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / QuarterlyPO#:20-0099AC

Date: 22-Jun-21

Client Sample ID: GW-DEP-Drain 3 Collection Date: 3/1/2021 Lab Sample ID: 210303020-026 Matrix: GROUNDWATER

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
FIELD-PH, RES CL2, AND TEMP A	RE NOT ELAP CE	RTIFIABLE				Analyst: FLD
Dissolved Oxygen (E360.1)	5.31	0.10		mg/L		3/1/2021
Flow, GPD	1712			gal/day		3/1/2021
pH (E150.1)	7.4			S.U.		3/1/2021
Temperature (E170.1)	4			deg C		3/1/2021
Turbidity (E180.1)	56	1.0		NTU		3/1/2021
ICP METALS - EPA 200.7						Analyst: KH
(Prep: SW3010A - 3/	/4/2021)					
Aluminum	ND	100		μg/L	1	3/5/2021 12:55:00 PM
Arsenic	5.02	5.00		μg/L	1	3/5/2021 12:55:00 PM
Boron	73.6	50.0		μg/L	1	3/5/2021 12:55:00 PM
Cadmium	ND	5.00		µg/L	1	3/5/2021 12:55:00 PM
Calcium	102000	50.0		µg/L	1	3/5/2021 12:55:00 PM
Copper	ND	5.00		µg/L	1	3/5/2021 12:55:00 PM
Iron	ND	50.0		μg/L	1	3/5/2021 12:55:00 PM
Magnesium	23400	50.0		μg/L	1	3/5/2021 12:55:00 PM
Manganese	ND	20.0		μg/L	1	3/5/2021 12:55:00 PM
Potassium	2370	50.0		μg/L	1	3/5/2021 12:55:00 PM
Selenium	ND	5.00		μg/L	1	3/5/2021 12:55:00 PM
Sodium	6360	500		μg/L	1	3/5/2021 12:55:00 PM
HARDNESS - EPA 200.7 REV 4.4						Analyst: KH
Total Hardness (As CaCO3)	350	5		mg/L CaCO3	1	3/5/2021
MERCURY - EPA 245.1 REV 3.0 (Prep: E245.1 - 3/	/3/2021)					Analyst: AVB
Mercury	ND	0.0002		mg/L	1	3/4/2021 9:29:42 AM
ANIONS BY ION CHROMATOGRA	PHY - EPA 300.0 R	EV 2.1				Analyst: CC
Chloride	2.93	2.00		mg/L	2	3/24/2021 2:34:39 AM
Sulfate	165	4.00		mg/L	2	3/24/2021 2:34:39 AM
ALKALINITY TO PH 4.5 -SM 23208	3-2011					Analyst: CP
Alkalinity, Total (As CaCO3)	180	10	н	mgCaCO3/L	1	3/15/2021 10:00:00 AM
AMMONIA (NON-DISTILLED) - EP	A 350.1 REV 2.0					Analyst: KB

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / QuarterlyPO#:20-0099AC

Date: 22-Jun-21

Client Sample ID: GW-DEP-Drain 3 Collection Date: 3/1/2021 Lab Sample ID: 210303020-026 Matrix: GROUNDWATER

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
AMMONIA (NON-DISTILLED) - EP	A 350.1 REV 2.0				Analyst: KB
Nitrogen, Ammonia (As N) CONDUCTANCE AT 25C - SM 251	ND 0B-2011	0.1	mg/L	1	3/18/2021 12:16:38 PM Analyst: BG
Specific Conductance TOTAL DISSOLVED SOLIDS - SM	641 2540C-2011	1	µmhos/cm	1	3/17/2021 Analyst: JH
TDS (Residue, Filterable)	475	5	mg/L	1	3/8/2021

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / QuarterlyPO#:20-0099AC

Date: 22-Jun-21

Client Sample ID:GW Dep Drain 2Collection Date:3/1/2021Lab Sample ID:210303020-027Matrix:GROUNDWATER

Analyses	Result	RL Qual	Units	DF	Date Analyzed	
FIELD-PH, RES CL2, AND TEMP ARE NO	T ELAP CERT	IFIABLE			Analyst: FL	_D
Observation	Dry		NA		3/1/2021	

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / QuarterlyPO#:20-0099AC

Date: 22-Jun-21

Client Sample ID:GW Dep Drain 4Collection Date:3/1/2021Lab Sample ID:210303020-028Matrix:GROUNDWATER

Analyses	Result	RL Qual	Units	DF	Date Analyzed	
FIELD-PH, RES CL2, AND TEMP ARE NO	T ELAP CER	TIFIABLE			Analyst: F	LD
Observation	Dry		NA		3/1/2021	

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / QuarterlyPO#:20-0099AC

Date: 22-Jun-21

Client Sample ID: Under Drain 5 Collection Date: 3/1/2021 Lab Sample ID: 210303020-029 Matrix: GROUNDWATER

Analyses	Result	RL Qual Units	DF	Date Analyzed	
FIELD-PH. RES CL2. AND TEMP ARE NO	T ELAP CERT	TFIABLE		Analyst: FLD	
				· · · · · · · · · · · · ·	
Observation	Dry	NA		3/1/2021	

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / QuarterlyPO#:20-0099AC

Date: 22-Jun-21

Client Sample ID:8910-SHCollection Date:3/2/2021Lab Sample ID:210303020-030Matrix:GROUNDWATER

Analyses	Result	RL Qual	Units	DF	Date Analyzed	
FIELD-PH, RES CL2, AI	ND TEMP ARE NOT ELAP CERTIFIA	ABLE			Analyst: F	LD
Observation	Poor Recovery		NA		3/2/2021	

CLIENT:Lockwood Hills LLCWork Order:210303020Reference:Lockwood Ash Landfill / QuarterlyPO#:20-0099AC

Date: 22-Jun-21

Client Sample ID: 8405 Collection Date: 3/1/2021 Lab Sample ID: 210303020-031 Matrix: GROUNDWATER

Analyses	Result	RL Qual	Units	DF Date Analyzed	
FIELD-PH, RES CL2, AND TEMP ARE NO	T ELAP CER	TIFIABLE		Analyst: FLD)
Observation	Dry	Ν	NA	3/1/2021	

314 North Pearl Street Albany, New York 12207 518-434-4546♦ Fax: 518-434-0891 CHAIN OF CUSTODY RECORD

N.

ŧ.

210303020

AES Work Order#:

EXPERIENCE IS THE SOLUTION

A full service analytical research laboratory offering solutions to environmental concerns

Client Nar	me:	Address:								
Lockw	ood Hills LLC									:
Send Repo	ort to:	Project Nam	e (Location)	:				Samplers	Name:	
Dale Ir	win	Tocherre	.d. A h. T	F	Onerto	-1		Ru	rR_{r}	Aland K. da Antola
Client Pho	one No:	LOCKWO	ou Asn I		Quarte	цу		Nyur	I Della	In Medin Hund
<u>au</u> 7		PO #:	PO #: Samplers Signan							
Client Fax	ξ No:		Time							1
AES Sample	Client Sample ID:	Date	A=am		Sampl	е Тур	e	# of Cont's		Analysis
ID		Sampico	P=pm	<u> </u>	<u>Matrix</u>	<u>C</u>	<u>G</u>			
COI	1842	3221	0735	A P	GW		G	4	Lockv	vood Ash LF Quarterly
CO2	8404	3/1/21	1120	A P	GW		G	4	Field	pH, Temp, Turbidity
CO3	8908-D	3/1/21	1510 -	A P	GW		G	4		
CC4	8908-SH	3/1/21	1520	A P	GW		G	- 4		
CCS	8909-D	3/1/21	1550	A P	GW		G	4		
COLO	8909-SH	3/1/21	1250	A P	GW		G	4		
CO7	8910-D	31.21	1350	A P	GW		G	4		
CC8	8911-D	3/121	1420	A P	GW		G	4		
œя	8911-SH	312122	0730	A P	GW		G	4		
C10	8942-D	3/2/23	0930	A P	GW		G	4		
CIL	9306-SH	3/1/21	1640	A	GW		G	4		
Ci2	GW Dup <u>3909 - D</u>	3/1/21	1550		GW		G	4		
<u>Shipmen</u>	t Arrived Via:			Spe	ecial Instru	ction	s/Rem	arks:		
FedEx	UPS Client (AES' Oth	ner:		Pa	ige 1 of 3	ł			y.	
Turnar	ound Time Requested:									
1 Day	/ 🗌 3 Day 🗌 Normal									
2 -Da	y 🗌 5 Day									
Relinquis	shed by: (Signature)	Receive	d by: (Signat	ure)					Date	Time
Relinquis	shed by: (Signature)	Receive	d by: (Signat	ture)					Date	Time
									Data	Time
Relinqui	shed by: (Signature)	Receive	d for Labor	ator	y by:				3/3/2	Icclean
1	Sample Townsorthing			rone	rly Preser	ved	1		Rec	ceived Within Holding Times
1	Ambient Chilled		1	- ope -/-	V N	,				Ψ N
	Unning Process begun	ling Process begun							Notes:	
	otes:		ə							
										210303020

314 North Pearl Street Albany, New York 12207 518-434-4546 Fax: 518-434-0891 CHAIN OF CUSTODY RECORD

AES Work Order#:

210303020

EXPERIENCE IS THE SOLUTION

A full service analytical research laboratory offering solutions to environmental concerns

Client Nar	ne:	Address:											
Lockw	ood Hills LLC								-				
Send Repo	ort to:	Project Nam	e (Location)):				Samplers 1	Name:	. /			
Dale Ir	win	Loghrma	ad Ach	ГE	Quarta	- 1 x7		Dura Rataleration Labo					
Client Pho	one No:	LOCKWO	ou Asn		Quarter	Ty		PYU	CYUN DUCSEY KEUN ANDA				
Client Fax	No:	PO #:	PO#: Samp						Signature:				
AES		Date	Time	Π	for the Terry # of								
Sample	Client Sample ID:	Sampled	A=am P=nm		Matrix C C C			Cont's		Analysis			
10.	CW Dop Drain 1	1	1 pin	A	CW	ž	Č	4	Locky	wood O Field pH. Temp.			
013	Gw Dep Diam i	31121	1011	Р	um		G		Turh	Field Flow Reading DO			
			1129	Δ	CINI		C	· 	I ui Dy	"			
014	Leak Detection Syst.	3121	1050	P	GW		6	4					
015	Under Drain 1	3/1/21	1312	A P	GW		G	5		66			
Cic	Under Drain 2	3/1/21	1105	A P	GW		G	4					
C17	Under Drain 3	3/1/21	1017	A P	GW		G	4		66			
018	Inlet to Pond	3/1/21	1327	A P	GW		G	5		66			
019	Keuka Upstream	3/1/21	1415	A P	GW		G	4	Lockwood Quarterly Field pl Temp, Turb, DO				
020	Keuka Downstream	3/1/2/	1348	A P	SF		G	4	66				
C21	Surface Water Dup	3/1/21	1415	A P	SF		G	4	66				
C22	Pond Grab	3/1/21	1428	A P	SF		G	4	66				
C:23	Field Blank	3/1/2/	1320	A	GW		G	4		"			
024	LLHg Field Blank	3/1/21	1315	P	GW		G	1		EPA 1631			
Shipmen	t Arrived Via:	*		Sp	ecial Instru	ctions	/Rem	arks:					
FedEx	UPS Client AES Oth	er:		Do	~~) of ?								
				ra I	ge z or 5								
Turnaro	ound Time Requested:				·								
1 Day	\square 3 Day \square Normal									t -			
2 -Da	y 🗌 5 Day	Dessing	thu (Signo	tura					Date	Time			
Relinquis	ned by: (Signature)	Received	i by, (Signa	uie)					Dute	1 11110			
Relinquis	hed by: (Signature)	Receive	d by: (Signa	ture)	<u>.</u>				Date	Time			
Relinquis	hed by: (Signature)	Received for Laboratory by:							Date	Time			
		Ku							P/3/	2, 100 can			
	Sample Temperature		P	rope	rly Preser	ved			Re	eccived Within Holding Times			
	Ambient Chilled			G	N N					Y N			
				C						· · ·			
Not	tes:t	Note	s:						Notes:				
	**************************************			-									

314 North Pearl Street Albany, New York 12207 518-434-4546 Fax: 518-434-0891

9

CHAIN OF CUSTODY RECORD

AES Work Order#:

210303020

EXPERIENCE IS THE SOLUTION

A full service analytical research laboratory offering solutions to environmental concerns

Client Na	me:	Address.									
Lockw	vood Hills LLC										
Send Rep	ort to:	Project Nam	e (Location	i):				Samplers	Name:		
Dale I	rwin				~	_		\sim	P. R.A. I.A.		
Client Ph	one No:	Lockwo	od Ash	LF	Quarter	rly		MY G	Hyan Dausley Kevin Ambra		
		PO #:						Samplers	plers Signature:		
Client Fax	x No:						- 6		and the second		
AES		Date	Time		Sampl	e Tvn	е	# of			
Sample	Client Sample ID:	Sampled	A=am Matrix C G					Cont's		Analysis	
	8/01		1 pm		GW		<u> </u>	4	Lockwo	od Ash LF Quarterly	
025	8401	3/1/11	1670		Q W			T	Eicld n	H Tomm Turbidity	
		01114	1020						rieta p	n, remp, rurblany,	
Ouc	Les Des Desta 3	3/1/2.			600			i.i.	Lockwood	a field phi Tempi	
	e and prain s	011/01			C			. 1	760), tiald tipes, DO	
	GW Dep Drain 3	417-	ALE AND CONTRACTOR OF A CONTRACT OF	A P	-GW-		**********		0	bservation Only	
	CW Don Drain 2	101-101	1	A	GW			0	0	hservation Only	
021	G w Dep Diam 2	31121	1626	Р	GW				0	bser vation Only	
028	GW Dep Drain 4	311/21	1658	A P	GW			0	0	bservation Only	
029	Under Drain 5	3/1/21	0940	A P	GW			0	0	bservation Only	
030	8910-SH	312121	0830	A P	GW			0	0	bservation Only	
031	8405	311/21	1654	A P	GW			0	ek	oservation Only	
-				A							
				A							
				A						· · · · · · · · · · · · · · · · · · ·	
				P							
				P							
Shipmen	t Arrived Via:			Sp	ecial Instru	ctions	/Rem	arks:			
FedEy	LIPS Client (AFS) Oth									a.	
really	OFS Chem ALS Ou			Pa	ige 3 of 3						
Turnaro	ound Time Requested:										
□ 1 Dav	\square 3 Day \square Normal										
$\square 2 - Da$	$\mathbf{v} \square 5 \mathbf{D} \mathbf{a} \mathbf{v}$										
Relinquis	shed by: (Signature)	Received	l by: (Signa	ture)					Date	Time	
Relinquia	whed hy: (Signature)	Receiver	hv (Sime	ture					Date	Time	
			. 57. (516IIG								
			16 7 1	<u>. </u>					Deta	Tim -	
Relinquis	shed by: (Signature)	Received	1 for Labo	rator	y by:				Jate 1	1 ime	
	and the second sec	K	inc	CONSIGNATION OF THE OWNER					7/3/21	100bam	
Sample Temperature					rly Preser	ved	_		Receiv	ed Within Holding Times	
Ambient (Chilled Chilling Process begun					N N					Ŷ N	
Notes: Notes:									Notes:		
								· · · ·			

314 North Pearl Street • Albany, New York 12207 • (518) 434-4546 • Fax (518) 434-0891

TERMS, CONDITIONS & LIMITATIONS

All service rendered by the **Adirondack Environmental Services**, Inc. are undertaken and all rates are based upon the following terms:

- (a) Neither Adirondack Environmental Services, Inc., nor any of its employees, agents or sub-contractors shall be liable for any loss or damage arising out of Adirondack Environmental Services, Inc.'s performance or nonperformance, whether by way of negligence or breach of contract, or otherwise, in any amount greater than twice the amount billed to the customer for the work leading to the claim of the customer. Said remedy shall be the sole and exclusive remedy against Adirondack Environmental Services, Inc. arising out of its work.
- (b) All claims made must be in writing within forty-five (45) days after delivery of the **Adirondack Environmental Services, Inc.** report regarding said work or such claim shall be deemed or irrevocably waived.
- (c) Adirondack Environmental Services, Inc. reports are submitted in writing and are for our customers only. Our customers are considered to be only those entities being billed for our services. Acquisition of an Adirondack Environmental Services, Inc. report by other than our customer does not constitute a representation of Adirondack Environmental Services, Inc. as to the accuracy of the contents thereof.
- (d) In no event shall Adirondack Environmental Services, Inc., its employees, agents or sub-contractors be responsible for consequential or special damages of any kind or in any amount.
- (e) No deviation from the terms set forth herein shall bind **Adirondack Environmental Services, Inc.** unless in writing and signed by a Director of **Adirondack Environmental Services, Inc.**
- (f) Results pertain only to items analyzed. Information supplied by client is assumed to be correct. This information may be used on reports and in calculations and **Adirondack Environmental Services, Inc.** is not responsible for the accuracy of this information.
- (g) Payments by Credit Card/Purchase Cards are subject to a 3% additional charge.

Collection	Sample ID	Donth	Flovation	Unita
Date	Sample ID	Deptii	Elevation	Units
3/1/2021	8908-D	8.31	604.66	feet
3/1/2021	8909-D	45.71	516.19	feet
3/1/2021	8910-D	22.78	535.56	feet
3/1/2021	8911-D	29.64	527.27	feet
3/1/2021	8942-D	16.04	542.91	feet
3/1/2021	8908-SH	6.91	605.86	feet
3/1/2021	8909-SH	12.38	549.25	feet
3/1/2021	8910-SH	16.48	542.07	feet
3/1/2021	8911-SH	19.89	537.03	feet
3/1/2021	9306-SH	3.70	562.52	feet
3/1/2021	7741	24.42	563.63	feet
3/1/2021	1842	7.40	551.80	feet
3/1/2021	8406	16.16	553.39	feet
3/1/2021	8401	4.91	655.38	feet
3/1/2021	8402	8.51	655.58	feet
3/1/2021	8403	8.17	655.90	feet
3/1/2021	8404	4.60	598.13	feet
3/1/2021	8405	DRY	<556.01	feet

Lockwood Ash Disposal Site Second Quarter 2020

Attachment 2

Time-Series Plots – Routine Parameters in the Leachate and Monitoring Wells Updated Through 1st Quarter 2021

Table of Contents Leachate Time-Series Plots (alphabetical order) Monitoring Well Time-Series Plots (alphabetical order) A2-17 thru A2-15 Static Groundwater Level Time-Series Plots

EnSol, Inc.

ATTACHMENT 2

Time-Series Plots

Routine Parameters in the Leachate and Monitoring Wells

Updated Through 1st Quarter 2021

Table of Contents:

Leachate Time-Series Plots (alphabetical order)	A2-2 thru A2-13
Monitoring Well Time-Series Plots (alphabetical order)	A2-14 thru A2-35
Static Groundwater Level Time-Series Plots	A2-36 thru A2-37

LEACHATE TIME-SERIES PLOTS

ALKALINITY

ALUMINUM (Note: Only data above detection has been included in this plot)

AMMONIA (Note: Only data above detection has been included in this plot)

ARSENIC (Note: Only data above detection has been included in this plot)

CADMIUM (Note: Only data above detection has been included in this plot)

Q:\Lockwood Hills LLC\31-0021 2021 Services\01-Environmental Reporting\c-2021 Q1\Time Series Plots.docx Date: 6/29/2021; Rev 0

CALCIUM

CHLORIDE

CONDUCTIVITY

COPPER (Note: Only data above detection has been included in this plot)

HARDNESS

MAGNESIUM

Q:\Lockwood Hills LLC\31-0021 2021 Services\01-Environmental Reporting\c-2021 Q1\Time Series Plots.docx Date: 6/29/2021; Rev 0

MANGANESE (Note: Only data above detection has been included in this plot)

MERCURY (Note: Only data above detection has been included in this plot)

POTASSIUM

SODIUM

SULFATE

TOTAL DISSOLVED SOLIDS

TURBIDITY (Note: Only data above detection has been included in this plot)

MONITORING WELL TIME-SERIES PLOTS ALKALINITY GLACIAL TILL

BEDROCK

MONITORING WELL TIME-SERIES PLOTS, CONT.

ALUMINUM

GLACIAL TILL (Note: Only data above detection has been included in this plot)

1000000 Aluminum Concentration, µg/L 100000 10000 1000 100 10 1 12129102 12131192 12/31/94 12130196 12129100 12127108 12126112 12125118 12124120 12130198 12128104 12128106 12127110 12125116 11/189 1/1/197 12126114 8909-D 8910-D 8911-D 8942-D --*-- 8908-D •--- 8401 ---- 8404 **Detection Limit**

BEDROCK (Note: Only data above detection has been included in this plot)

MONITORING WELL TIME-SERIES PLOTS, CONT. AMMONIA

GLACIAL TILL (Note: Only data above detection has been included in this plot)

BEDROCK (Note: Only data above detection has been included in this plot)

MONITORING WELL TIME-SERIES PLOTS, CONT. ARSENIC

GLACIAL TILL (Note: Only data above detection has been included in this plot)

BEDROCK (Note: Only data above detection has been included in this plot)

MONITORING WELL TIME-SERIES PLOTS, CONT. BORON

GLACIAL TILL

BEDROCK

MONITORING WELL TIME-SERIES PLOTS, CONT. CADMIUM

GLACIAL TILL (Note: Only data above detection has been included in this plot)

BEDROCK (Note: Only data above detection has been included in this plot)

MONITORING WELL TIME-SERIES PLOTS, CONT. CALCIUM

GLACIAL TILL

BEDROCK

MONITORING WELL TIME-SERIES PLOTS, CONT. CHLORIDE

GLACIAL TILL (Note: Only data above detection has been included in this plot)

BEDROCK (Note: Only data above detection has been included in this plot)

Q:\Lockwood Hills LLC\31-0021 2021 Services\01-Environmental Reporting\c-2021 Q1\Time Series Plots.docx Date: 6/29/2021; Rev 0
MONITORING WELL TIME-SERIES PLOTS, CONT. CONDUCTIVITY

GLACIAL TILL

MONITORING WELL TIME-SERIES PLOTS, CONT.

COPPER

GLACIAL TILL (Note: Only data above detection has been included in this plot. The unfilled point is less than detection but the detection limit was higher for this point than for other data.)

BEDROCK (Note: Only data above detection has been included in this plot. The unfilled point is less than detection but the detection limit was higher for this point than for other data.)

MONITORING WELL TIME-SERIES PLOTS, CONT. HARDNESS

GLACIAL TILL

MONITORING WELL TIME-SERIES PLOTS, CONT. IRON

GLACIAL TILL

Q:\Lockwood Hills LLC\31-0021 2021 Services\01-Environmental Reporting\c-2021 Q1\Time Series Plots.docx Date: 6/29/2021; Rev 0

MONITORING WELL TIME-SERIES PLOTS, CONT. MAGNESIUM

GLACIAL TILL

MONITORING WELL TIME-SERIES PLOTS, CONT. MANGANESE

GLACIAL TILL (Note: Only data above detection has been included in this plot)

BEDROCK (Note: Only data above detection has been included in this plot)

Q:\Lockwood Hills LLC\31-0021 2021 Services\01-Environmental Reporting\c-2021 Q1\Time Series Plots.docx Date: 6/29/2021; Rev 0

MONITORING WELL TIME-SERIES PLOTS, CONT. MERCURY

BEDROCK (Note: Only data above detection has been included in this plot)

Q:\Lockwood Hills LLC\31-0021 2021 Services\01-Environmental Reporting\c-2021 Q1\Time Series Plots.docx Date: 6/29/2021; Rev 0

MONITORING WELL TIME-SERIES PLOTS, CONT. pH

GLACIAL TILL

MONITORING WELL TIME-SERIES PLOTS, CONT. POTASSIUM GLACIAL TILL

MONITORING WELL TIME-SERIES PLOTS, CONT. SELENIUM

GLACIAL TILL (Note: Only data above detection has been included in this plot)

BEDROCK (Note: Only data above detection has been included in this plot)

MONITORING WELL TIME-SERIES PLOTS, CONT. SODIUM

GLACIAL TILL

Q:\Lockwood Hills LLC\31-0021 2021 Services\01-Environmental Reporting\c-2021 Q1\Time Series Plots.docx Date: 6/29/2021; Rev 0

MONITORING WELL TIME-SERIES PLOTS, CONT. SULFATE

GLACIAL TILL

Q:\Lockwood Hills LLC\31-0021 2021 Services\01-Environmental Reporting\c-2021 Q1\Time Series Plots.docx Date: 6/29/2021; Rev 0

MONITORING WELL TIME-SERIES PLOTS, CONT. TOTAL DISSOLVED SOLIDS

GLACIAL TILL

Q:\Lockwood Hills LLC\31-0021 2021 Services\01-Environmental Reporting\c-2021 Q1\Time Series Plots.docx Date: 6/29/2021; Rev 0

MONITORING WELL TIME-SERIES PLOTS, CONT. TURBIDITY

GLACIAL TILL

STATIC GROUNDWATER LEVEL TIME-SERIES PLOTS GLACIAL TILL

DEPTH TO WATER SURFACE

GROUNDWATER ELEVATION

Q:\Lockwood Hills LLC\31-0021 2021 Services\01-Environmental Reporting\c-2021 Q1\Time Series Plots.docx Date: 6/29/2021; Rev 0

STATIC GROUNDWATER LEVEL TIME-SERIES PLOTS BEDROCK

DEPTH TO WATER SURFACE

GROUNDWATER ELEVATION

Attachment 3

Flow Metering System – Leachate Flow Rate Time Series Updated through March 31st, 2021

EnSol, Inc.

